A ROTATING RESPIROMETER TO MONITOR Voluntary activity and associated EXCIINGE OF RESPIRATORI GASES IN TIIE LAND HERMIT CRAB (COENOZITA COMPRESSLS)

By Michele g. WIIEATLI
 U.SA.

BRIN.N R. McMAIION
Defarment of Biology, Liniversity of Calgary, 2500 Liniversily Drize NW, Calgary, Alberta, 72N IN4 Canada

WARREN W. BLIRGGREN AND MLAN W. PINDER
Zoology Department, Linversity of Massachusetts, Amherst, M101003, U.SA.

Accepled 7 May 1985

SUMMARY

A rotating respirometer was designed which enabled respiratory gas exchange in the land hermit crab Coenobila compressus to he correlated with voluntary submaximal sustained nedestrian aetivity. In the laboratory, crabs remaincd spontaneously active for up to 150 min , maintaining velocitics of $0.0 \mathrm{cms}^{-1}$. Comparable activity patterns were observed in the ficld. Quiescent O_{2} uptake (M_{2}) increased logarithmically as a f̣unetion of load rating of the adopted mollusean shell. Steady-state $\mathrm{I}_{\mathrm{m}_{2}}$ and A $L_{(0)}$ were measured after 30 nin of spontaneous activity and both increased lincarly with velocity. 'There was good correspondence between γ-intercept. values and those measured in inactive crabs. At the mean keomotory speed, $\mathrm{M}_{O_{2}}$ and $\mathrm{M}_{\mathrm{Cd}_{2}}$ were increased $3 \cdot 4$-fold and $2 \cdot 0$-fold respectively above settlad rates. Annimum and gross energetic cost of transport were estimated and compared with values in the literature. Mand $\mathbf{N 1}_{6} \mathrm{H}_{2}$ returned to sented levels withiu the first hour of recobery. The activity profile and concomitant changes in gas exchange are discussed in the context of acquisition of the shell-dwelling habit.

INTRODOCTION

In recent years much interest lias focused on the physiological changes which accompany exercise in decapod crustaceans (sec review artucles by Herreid, 1981: HeNuhon, 1981; McMahon \& Wilkens, 1983). In many of the original studies (e,g, McDonald, McMahon \& Wood. 1979; McMahon, McDonald \& Wood, 1979;

Kos words: Hermit crab, (oenobitu compmosus, voluntary exerise, gas exchange durthe cictelse, rotating resparmeren.

Ruthedge, $198(0)$ distance. sperd and force of losomotion were not quantified anmals were simply excreised to exhaustion which generall occurs within 10 mm . This has made a tomparison with the literature on ectothermic vertebrates difficult (reviewed by Brett. 1972; Bennctt, 1978). Some of the more recent investigations on the land crabs ('ardisoma (Wood \& Randall, 1981a, b; Herreid, O'Nahoney \& Full, 1983), Hirgus (Smatresk \& Cameron, 1981), Ocppode (Full \& Herreif, 19*3) and Vica (Full ※ Herreid, 1984) have quantified speed of enforced locomotion using classical treadmill techniques. The focus however has remained on $10-1020-\mathrm{min}$ bursts of exhaust ing activity (speeds of around $10 \mathrm{~cm}^{-1}$). White bursts of sprinting activity are important in escaping predators, submaximal but sustained lncomotion may be far more typical of the natural behavioural repertoire. The maly cxisting study on maintained activity is on the blue crab, Callonectes sapidus, (Boorh, Me Mahon \& Pinder, 1982) which can be forced to swim for up to lh .
'Treadmill studies in all animals are somewhat questionable since sped is generally presch by the investigator, Irequently unsupported by measurements of hicld activily. $F_{\text {urthermose, recent sludies in humans have denonstrated that even trained treadmill }}$ rumbers experience balance problems which are not associated with ground ruming (Wios)ley \& Winter, 1980). Thus treadmill extercise is undoubtedly more stress[u] than voluntary activity.

At night, on beaches in Panama, we were impressed by the sustaned pedestrinn locomotion of a local terrestrial hermit crab (Coenobito iompressus H. Milne Edwards). Previous studies of shont bursts of forced activity of this species have been made using a treadmill (C. F. I lerreid \& R. J. Full, unpublished). Hermit crabls are interesting from an energetic view point duc to the additive locomotor costs associated with carriage of the adopted molluscan shell which is trequently equivalent to body mass (Wheatly, 1984). As such, they provide a uniquc opportunity to assess the natural elfects of loading in an invertebrate species. Furthermore, hermit crabs provide an interesting comparison with other decapods since they do not use sideways oxtapedal locomotion but move in a forwards direction using the chelipeds, seeond and third pairs of legs for walking, The fourth and fifth pairs of legs are reduced and modilied to assist in shell retention.
'lhe present paper describes observations we made in the held on natural locomonwory patterns in firmobita. We subscquently developed a rotating respirometer in study the energetics of voluntary activity in this species. This apparatus enabled us to corrclate exercise porformance with exchange of respiratory gases.

MATFRIALS AND METIIODS
Shudy site and experimental amimals
'The study was conductad on land hermit crabs fermobita compressus (H. Mine Edwards-identihed by relerence to Ball \& I laig, 1973) which were collected at Boy Scuuts' Beach on Nans Island, off the Pacific coast of Panama in April and May of 1983. In this population, crabs had a mean body mass of $10.5 \pm 1.1 \mathrm{~g}(N=29)$ and must frequently inhabited Nerita scabncosta shehs (identified Jrom Keen, 1971) with a mean weight association index (WI = mollusc shell mass/crab body mass; Wheatly.

Fith 1. Expermencal apparatus Operational detals are piven in the text.
1984) of $(1.96 \pm 0.06(V=22)$. Less frequently Coenobita were found inside shells of Muncanthus, Polmices, Thais, Dittica, Northia and Opeatostomu provisting WI ratios ranging up to $1 \cdot 45$. Activity fatterns were observed in the natmal emvironment. For physiologieal investigation, animals were transported to the rearby Naos 1, aburatury of the Smithsonian Tropical Research Institute where they were maintaincd under ambiunt conditions (i.e. air temperature $\approx 30 \pm 4^{\circ} \mathrm{C}$; Lumidity $=70 \pm 10 \%$) in $\mathrm{fl} \mathrm{l}_{\mathrm{sis}}$ terraria $(60 \times 30 \times 45 \mathrm{~cm})$ for 1 week prior to experimentation. During thes period they had free aceess to 10 ric sea water and fruit. A scaftolding of ceramic tiles was erceted anside the terrarium to provide shelter and internal georraphy.

Field transect suriey

On the evening of 27 th April 1983, a day which had experienced tropieal weather tupical of the season (i.e. brief but heavy rainfall around 10.00 h), a transect survey was rum on the central portion of Boy Scouts' Beach ($8^{\circ} 54 \cdot 8^{\prime} \mathrm{N}-7^{\circ} 39^{\circ} 3 \cdot 9^{\prime} \mathrm{W}$). We had previously ohserved that crabs spent daylight hours sheltering in a patch of rocks high up on the beach. A b-IIt wide transect was marked off in $2-\mathrm{m}$ grids from these rocks down to the water line - a total distance of 30 m . Vurnbers of erabs in each grid were recorded at hourly intervals from 19.00 h until nudnight.

Experimental apparatus - the notating respirometer
Lonomotory activity and associated changes in gas exchange were stutied in a ciosed respirometer (Fig. 1) which the crab could rotate at will by walking along the inside inclined surface. The apparatus was fashioned after a system used by Jensen
\& Holm-Jensen (1980). The respirometer was a 316 ml glass storage jar (i.d. 85 mm). witl a counterbalanced lid, which would float sodeways and approximately 50% submerged in a surrounding water jacket. 'The dimensions of the outer container only marginally exceeded the depth and external diameter of the respirometer so that movements other than rotational were eliminated. A plastic meshwork was glued onto the inside wall of the jar to provide traction for the crab's walking movernents. 'l'he water jacket was heated with a small aquarium filament heater to maintain air temperature inside the respirantere at the experimental temperature which was $30 \pm 2^{\circ} \mathrm{C}$. . A hole drilled throught the lid of the jar was sealed with dental dan serving as a sampling port for respirometer gas.
A $3-\mathrm{cm}$ strip of aluminium foil was glued along the outside of the jar in parallel with the axis of rotation so that te was immersed in the surrounding water during hate of each complete revolution. 'I'wa large tattened copper electrodes were positioned at right angles to this strip) and led aite an impedance convertor (6 FI Model 2901, Vorrobay. (") to a Gilson biscriptual polygraph (ICT-SH). Complete revolutions were detected as changes in the impedance of the water each time the [nid strip was momersed and were recorded as positive square-based dethections in the polygraph trace. Distance exverce, duration and velocity of zoluntay locomotion could, in this way, be quantiticd.

Protocol and analytical procedures

Bascd on preliminary field observations (see Results), anmals were plierd in the respirometcr in the carly morning and allowed to acelimate to the experimental chamber durine a period of the day when they were normally inactive. Pre-exercised (crintrol) rates ol O_{2} consumption $\left(\dot{\mathrm{M}}_{\mathrm{O}_{2}}\right.$) and CO_{2} production ($\dot{\mathrm{M}}_{\left(w_{2}\right)}$) were estimated 3 lu later hy analysing the gas content of samples sequentially removed from the inside of the respirometer. 'Steady-state' active or recovered levels of \mathbf{N}_{10} and $\mathbf{N}_{\mathrm{CH}}{ }_{2}$ (as defined by Stamsby \& Barclay, 1970) were measured over the two time periods $(1 \cdot 5-1 \cdot(1$ and $1 \cdot 0-1 \cdot 5 \mathrm{~h}$ from the start or end of spontaneous activity. 'I'rials were performed on loaded and unloaded crabs. In the case of loaded cratro, animals were remnved ftom their shells for determination of body mass only upon completion of medeurcmetts.

Gils simples ($50-100 \mu \mathrm{l}$) were removed from the respirmmeter using gas-t.ght Hamilon stringes. Contents of O_{2} and CO_{2} were measured using Applied Electrochemistry analysers ($\mathrm{S}-3 \mathrm{~A} \mathrm{O}_{2}$ sensor $\mathrm{N}-37 \mathrm{M}$ and CD $3 \mathrm{~A} \mathrm{CO}_{2}$ sensor P61B, Summale, CA) electrically interfaced with a wo-channel Itilear Instruments Model 595 llat bed chart recorder. How of gas through the analysers was generated by two suction pump/fow meter systems (R/2a A . $\mathrm{A} / \mathrm{ied}$ Electrochemistry) which were set to have identical flows of 12.5 m$]$ min ${ }^{1}$. Tlacse twe systems cifectively operated in parallel. One drew dehumidified room air lirst through a CO_{2} analyser and then through channel 2 of a differential O_{2} analyser. 'The second mornwhite drew dehumidified room air directly through the reference channel (1) ol the ($)_{2}$ analyser. The O_{2} analyser was set to display the differential between the two dhanels. A diagram of this arrangement is given by MeMahon \& Burgeren (1985).

The two-analyser system was first calibrated using a standard gas which was 3% CO_{2} in N_{2}. Different volumes $(10,20,30,40,50,11)$ were minected as a discrete

 sitem could he calibrated relatively simply since the area bencath CO_{2} prak was diretty proportional to the $\left(\mathrm{C}_{2}\right.$ e content of the injected gas.

The (), analyser was also calibrated using umiary injections of $3 \% \mathrm{CO}_{2}$ in λ, since this was the only certified gas mixture avalable tio us in the field. The negative pat on the ($)_{2}$ differential trace effectively represented displacement of (θ_{2} from roon air (ternced (O_{2} `deficit'). This was again calibrated by mtegrating the area bencath the curve. In calculating O_{2} consumption inside the respixmeter it was important to remember that O_{2} 'defict' was attributable to CO_{2} addition as well as O_{2} removal by the crab. In calculating that part of the deficit which was due to (ρ_{2} removal it was necessary to know proportional changes in CO_{2} content of respirometer gas and the total amount of CO_{2} which had becon evolved.

Contents of O_{2} and CO_{2} in gas samples renoved from the respirometer were thus nuabured in μ mol and were subsequently used to calculate $\mathrm{Mos}_{\mathrm{o}}$ and $\mathrm{N}_{\text {co }}$ a knowing the volume of the respirometer, elapsed time and animal mass.

Statistical treatment of data

All data are expressed as mearl ± 1 s.f.. (number of observations). Samples were tested for homogeneily of variance (F rest) and means compared by Studen's twotaled t-test (paired or unpaired design) using $P^{\prime}=0.05$ as the fiducial limit. Lincar regression was perfommed by the least squares method. Slopes from different treatments were compared using an analysis of covariance (/ar, 1974). Io eases where regression lines were parallel, coincidence was tested by comparing clevations using the Vewman-Kculs multiple comparison procedure (Newman, 1939; Keuls, 1952),

RESI:I'TS
Sifontaneous achily

Frield observations

Fig. 2 illustrates the distribution of hermit crabs on the experimental grid from 19.00 h is midnight on a typical crening in the tropies. At 19.00 h no crabs were present. ()ver the next hour 35 animals energed and secupied transects any where 4 , 1021 m from the rocks. ${ }^{2} \Gamma_{u}$ cstablish this position it was necessary for them to move at a speed of $0.58 \mathrm{~cm} \mathrm{~s}^{-1}$. The mean weighted distance travelled however was 3.86 m which equates to an average velocity of $0 \cdot 11$ cms ${ }^{1}$. Over the next 2 b the weighted mears distance incrased to 6.20 m and then decreased to 3.30 m by midnight as the mghly excursion came to a cluse. From the dilierence in weighted mean distances conered por unit time, minimum running speeds of $\left(1 \cdot 09,0 \cdot 0.0\right.$ and $0.04 \mathrm{em}^{-1}$ ware calculated for successive hourly intervals betwecr 21.00 b and midnight. These are probably conservative estimates of rumbing speed since the moverment of animals during the first hour of activity clearly indicates that individuals were capable of greater velocitics. An in-deptl survey would demand that individual crabs be marked ind lollowed. Visual inspection did reveal however that the population as a whole

remained active for a number of hours and so sustained submaximal exercise is a prominent feature of the normal activity pattern.

Wohuntary activity in the rotating respirometer

In the laboratory hermit crabs exhibited forward pedestrian locomotion using the chelac as levers for propulsion in addition to the seeond and third pairs of legs. Animals were virtually 100% successful in rotating the respirometer and entire actograph traces were obtained from 32 individual trials. Activity spontaneously commenced in the late afternoon and continued uninterrupted for an average of $148 \pm 13 \mathrm{~min}$. During this time crabs covered $52.9 \pm 7.3 \mathrm{~m}$ at an average velocity of 0.6 cm or 0.2 BL (body lengths) ${ }^{1}$ where BL is taken as the tup of the chelae to the projection of the shell apex.

As in the field, individual erabs were variahle in their exercise performance. 'The naximum values observed for speed, distance covered and duration of spontancous activity were respectively $2 \cdot 5 \mathrm{~cm} \mathrm{~s}^{-1}\left(0.7 \mathrm{BLs}^{-1}\right), 150 \mathrm{~m}$ and 300 min . Crabs were divided arbitrarily into high and low performers based on their ability to cover distances 2 standard errors in excess of the mean value. An analysis of velocity with time during the exercise bout (Fig. 3) revealed that high performers maintained a velocity of $0.81 \mathrm{~cm} \mathrm{~s}^{-1}$ throughout the entire 221 min of activity whercas low performers exhibited a progressive decrease in running specd which became significantly reduced prior to cessation of activity at 119 min .

Vig. 3. Many velocits (\pm s.f.m) with time alter start of excreise in two groups of land hermit crathe

 rompmesme inhahiting three ditererte spoces of mollusean shell. I anear regression andilysis (on log $\mathrm{H}_{\text {(1, }}$ valnes). Loe $\mathrm{H}_{11}:-1 \cdot 11+10 \cdot 30 \mathrm{H}^{\prime} 1(1=(1 \cdot 985, \therefore=3)$.

Respiratong gas exchange

Pre-exercised

Stanclard \dot{M}_{0}, and $\dot{\mathrm{M}}_{(0)}$ in inactive $(\therefore$ ampressus occupying Nenta shells at $30^{\circ} \mathrm{C}$ were respectively 91.4 ± 8.9 (23) and 41.6 ± 4.4 (22) $\mu \mathrm{mol} \mathrm{kg}^{-1} \mathrm{~min}^{-1}$ producing an r value of 0.5 . When removed from their shells, these same crabs main-

 WI (shell:body mass ratio) (Fig. 4). Habtitation of the molluse shells Muricanthus
 $P=0 \cdot 013)$ and $1 \cdot 45 \pm 0 \cdot 08(N=3 . P=0 \cdot 007)$ respectively when compared with Nerita associations. Quiescent M_{0} : increased correspondingly to 138 ± 1.3 (8) and 245 ± 24 (3) $\mu \mathrm{mol} \mathrm{kg}{ }^{-1} \mathrm{~min}^{-1}$. Both increases were highly significant compared to crabs inside Nerita shells $(I)=9.9 \times 10^{\circ}, 3 \cdot 6 \times 10^{\circ}$ respectively).

Actire
'To remove gas samples, it was necessary to stop the rotation of the respirometer momentarily, Nhhough momentum was instanly re-established, sampling was restricted to 30 -min interyals to minimize any possible disturbing effect on the locomotory patterns. The $\overrightarrow{\mathrm{M}}_{\mathrm{t}_{2}}$ and $\dot{\mathrm{H}}_{\left(\mathrm{c}_{2} \text { values for the inital hall hour of activity were }\right.}$ discounted since lactic acid accumulated at the start of excreise (sec M. G. Wheatly, B. R. MeMahon, W. W. Burgeren \& A. W. Pinder, in preparation) and we were

 symbols in each case are antmals with and withour . Verita shells. Regression equations are: with

 $\therefore=7$).
 $\dot{M_{1}}$ amd $\dot{\mathrm{M}} . .$.) in Coenobita compressus running in a wfating erspirmmeter with and without Nerita she $/ 1 \mathrm{~s}$

	M_{1}		115^{1}	
	$\begin{gathered} \text { Y-intercept } \\ \left(\mu \text { mol kg }{ }^{\prime} \text { min }{ }^{\prime}\right) \end{gathered}$		Y-mioncept ($\mu \mathrm{mol})_{\mathrm{kg}}{ }^{\prime}$ 'min')	$\begin{gathered} \text { \1, } \\ \left(m m_{1} g^{1} k n I^{-1}\right) \end{gathered}$
[1/ ith shells	$111 \cdot 7$	0.552	45.4	10.171
Hethoul hicl]s:	$68 \cdot 4$	0.206	$4 \cdot 4$	13. Ion,
Data taken I				

uncertain of the extent to which anaerobic ATP production finclled locomotion at this time. However, the inerease in lactate was not cumnlative and so the values of $\mathrm{M}_{\text {ge }}$ and $\dot{\mathrm{N}}_{\mathrm{c} \mathrm{C}_{2}}$ recorded in the two snbsequent time periods are representative of a steady state' and bave been used to assess the total energy required to run at a given velocity. The mean values reported therefore correspond to measurements taken 4.5 min into the exercise bout and are plotted as a function of velocity in Fig. 5 for loaded and unlonded crabs. Velocity was calculated from the polygraph traee as revolutions per minute multiplied by the internal eircumberence of the jar.
$\mathrm{M}_{\mathrm{t}_{2}}$ and $\mathrm{M}_{\mathrm{c}_{0} \mathrm{o}_{2}}$ both increased linearly with velocity which is diagnostic of a number of birds, mammals and reptiles ('Iaykr, 1973). Crabs running with sbells exhibited ruming speeds ayywere from $0 \cdot 2-2 \cdot\left(\mathrm{~cm}^{-1}\right.$. Conloaded crabs displayed velocities at the lower emd of this range. The gradient of this line is termed $\mathrm{M}_{\text {run }}$ (mininimem cost of transport) and is commonly used to assess the energetic cost of locomotion (Taylor, thbmidt-Nielsen \& Raah, 1970: F'aylor, Heglund \& Maloiy, 1982) since it is indepenchat of an ammal's resting M_{n} a and $\dot{\mathrm{N}}_{\text {ctu }}$ and range of running velocities. As such, this inclex allows comparison of widely differing species. $\mathrm{M}_{\text {rus }}$ represents the total amount of energy required to locomote at a given velocity and assumes that steadystate H_{1}, has been reathed (Sccherman, '「aylor, Maloiy \& Ammirong, 1981; Rome, 1983). Both regurements were fultilled in the present study.

In the case of () : uptake, $\mathrm{N}_{\text {rus }}$ increased signitieantly from $0.21-0.55 \mathrm{mmol} \mathrm{g}^{-1}$ $\mathrm{km}{ }^{1}$ as aresult of shetl carriage or luading. When regression coefficients for animals with and whout shells were tested for homogeneity aia analysis of covariance, the slopes were found to be significantly different (F (11, 1..in $=9 \cdot 14 ; 0 \cdot 005<P<0 \cdot 0025$). The mull hyputhesis comld not be rejected for $\mathbf{N}_{\text {con }}$ as velocity however ($\mathrm{F}_{(1)}, 1,24$ $-1 \cdot 22: P>0 \cdot 25$) and a conmon weighted regression coefficient of $134 \cdot 1$ was computed. Statistitally however, these two lines do not coincide, since their elevations are different (l) 1 , 1.2s $=13 \cdot 9 ; P=0 \cdot 001$).
'Ihe l'-intercept values (corresponding to \%ero velocity) extrapotated from thesc regression equations ('Iable l) show good agreement with values measured in itractive animals (see above). Mor measured in unloaded crabs was somewhat higher than predicted indicating that removal from the shell had traumatized the animal. In this same group γ-intercept $\mathrm{M}_{\mathrm{CO}_{2} \text { values were very low suggesting that it is mot advisable }}$ to extrapolate outside the measured range.

Interpolation of the mean locomotory velocity of $0.6 \mathrm{~cm} \mathrm{~s}^{-1}$ onto the regression

Fig. 6. Energetic cost per gram (in terms of O_{2} uptake and (C) production) of running 1 km as a function of speed (data taken trom lïg. 3) in (oenohita compresseas running with and without shells, $W_{\text {ruw }}$ indicates mmomum cost of transport. The cequatoris describong chese lives are; CO_{2} : + sliells

equations for crabs carrying shells produced mean active $\mathbf{M}_{o_{2}}$ and Mcos_{2} values of 310.6 and $106.8 \mu \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ min $^{-1}$. These represent respectively 3.4 and $2 \cdot 6$ factorial increases above inactive values. Corresponding values for crabs removed from their shells were $142 \cdot 6$ and $42.8 \mu \mathrm{~mol} \mathrm{~kg}{ }^{1}$ min ${ }^{1}$, both ol which constitute a $1 \cdot 6$-fold increase over resting rates.

The gross energetic cost of transport was calculated (in momol $\mathrm{g}^{-1} \mathrm{~km}^{-1}$) from these regression lines by dividing $\mathrm{M}_{\mathrm{O}_{2} \text { or }} \mathrm{M}_{\mathrm{C} \boldsymbol{\gamma}_{2}}$ by velocity (see Herreid, 1981). 'Ihis index exhibited an exponential decay which could be litted, with greater than 90% confidence, by a second order polynomial for all lour treatments (Fig . 6.). The asymptote was in all cases close to the value for $\mathrm{M}_{\text {rin }}$. At high velocity the gradient of this line for all treatments was consistently $1.39 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{~km}^{-2} \mathrm{~h}^{-1}$. As velocity decreased, the gradient increased to as much as $26 \cdot 4$. The hrst significant departure from the
asy mpote was arhintarils defoned as the velocity at whel ole gradient doubled. Thes so-called "cribal velociry' was 1.7 cms ${ }^{\prime}$ for anmals carrying stells ($1.1 \mathrm{cms}{ }^{1}$ for
 spontaneous lecomention ($0.6 \mathrm{cmss}^{\mathrm{J}}$) suggesting that animals voluntarily minimize energetic expendinure. Interestingly the critical value was lower when animals were removed from their shells $\left(0.9 \mathrm{cms}^{1}\right.$ for $\dot{\mathrm{N}}_{\mathrm{O}_{2}} ; 0.3 \mathrm{cms} \mathrm{s}^{-1}$ for $\left.\mathrm{N}_{\left(\mathrm{m}_{2}\right)}\right)$ which may cxplain why this group voluntarily ran at a lower speed.

Recreqered

$\dot{L_{()_{2}}}$ recorded between 30 min and 1 h after activity ceased was $65 \cdot 3 \pm 9 \cdot 3$ (1.3) nutholkg min ${ }^{1}$ whieh was not significantly different from the pre-execised rate ($\Gamma^{\prime} 0 \cdot 06$). In some experiments, 20 ml of 10% sea water was introduced into the respirometer by injection through the lid at the start of the recovery period (see M. (3. Wheatly, B. R. McMahon, W. W. Burgeen \& A. W. Pinder, in preparation). (inder these circumstanees $\dot{\mathrm{M}}_{0_{2}}$ declined to $10.5 .9 \pm 3 \mu+(7) \mu \mathrm{mol} \mathrm{kg}{ }^{-1} \min ^{-1}$ which was hall the active rate. However, this rate was stgnilicantly higher than the preexeroised level $\left(P=8.7 \times 10^{-7}\right)$. $\boldsymbol{N}_{\text {(os was }} 18.8 \pm 2.6(13) \mu \mathrm{mol} \mathrm{kg}{ }^{-1}$ min ${ }^{-1}$ in crabs recovering without water which was a signiticant reduction below setrled values $\left(I=4.95 \times 10^{-5}\right)$. When crabs had aceess to water at this time the Meo measured in the gas phase decreased further to $12 \cdot 9 \pm 1.0(7)$! trmul kg ${ }^{-1}$ min'. This reduction was siguificant compared to sectled levels ($P=7.17 \times 10^{4}$) but not compared to $\dot{M}_{(O) 2}$ durang recovery without water $(P=0 \cdot 12)$.

DISCUSSIO.N

1 his threstigation presents an imovative approach to the sudy of exerejse plysiology in decapod erustaceans. Its most unique feature is that, by virtue of dice design of the apparatus, the activity studied in the hermit crah (\therefore compressus was entirely voluntary and not dictated by the experimentor. Furthermore an attempt was made to relate the laboratory exercise performance to activity patierns observed in the field.

The shell-dwelling habit creates an important disinerion between the land hernit crab and other terrestrial crabs. since it affords a buit-in protection mechantismagainst adverse environmental stmulion predators. If disturhed, crabs will withdraw into the shell using the major chela maddition to mether flattened ambulatories to obstruct the aperture (Harms, 1929). 'The suecess of this species in the terrestrial environment is largely attributed to retention of the molluse shell for purposes of conecalment (Recse. 1969). For this reason terrestrial liermil crabs can avoid bursts of high speed pedestrian activity whel arc ubserved in other species such as $L c a$ (Full \& I Icrreid, 1984) or ('ardisoma (Wiool \& Randall, 1981a,b; Herreid et al. 1983) and are shortlised sume the are fuelled predominaty anacrobically (see review article by \ilahon, 1981). 'I'his field has focused in the past on short periods of exhanstive achily (Mc:)onald et al. 1979; Rutledge, 1980) since it is often difficult atcorately (w) fiantify exereise performance without sophisticated instrumentation.

Shstained submaximal pedestrian activity has not frewously been sudied since thost species exhobit erratic movements when ruming al low speeds on treadmills (full \& I Ierreid, 1984). Marathon swimming achely has however been studied in the
lime crab) ((chlinectes sapidus) which naturally undertakes long-distance migtacions (Jud \& J) Indey, 1970). Boothot al. (1982) cxamined 1 h of forced swimming in this species. 'lheir study revealed smme mororane difterences in the physiological responses to submaximal zersus exhaturive activity and these have been further documented in the present sudy for pedestrian locomotion.

Their rapid and elfective method of withelrawal from hostile conditions has enabled hermit crabs to colonize extensively the terrestrial environment. While their activity latks the urgency of other terrestrial species, it is no less impressive especially considering the imposed load which they support in the form of the adopted mullusican shell. The conspicuous regimented motion of this parlicular species across beaches in the tropics has earned them the local name of 'soldachi' - 'soldiers' in translation. 'The nocurnal activity pattern presently reported contirns original obscrvations made by Ball (1972) who reported that ('. compressus betame attive at aight in arid areas.

Actively

The rotating respirometer used in this study atorded to the unique ability 10 quantily voluntary locomotion in lerms of time active, distance covered and running speed. 'I'here was a strong smimarity between activity profiles in the laboratory and field. In the held at might, crabs were found as far as 24 m from their daytime retreat (Fig. 2), suggesting an upper limit of 48 m for a nightly excursion. The mean distance covered in laboratory trials was 53 m . Conservative estimates from transect data sugges that crabs moved at specds anywhere [rom $0 \cdot 11-0.58 \mathrm{~cm}^{-1}$. Wean specds observed in the laboratory ($0 \cdot 6$ oms ${ }^{\prime}$) were at the upper end if this range. Compared to wher terrestrial species these are moderate speeds. The fastesl documented land crat) is the ghost crab Ocppode gaudichundii (Full \& I Ierreid, 1983) which has a beody mats of 2.5 g and can attain speeds of 2 J .1 cms . Larger specits such as fifictrimus lateralis $(50 \mathrm{~g})$ and Cardisoma guanhumi $(150 \mathrm{~g})$ display rumning specds around $+7 \mathrm{cms}^{-1}$ (Herreid, Lee \& Shah, 1979); llerreid el al. 1983). Full \& Herreid (1984) attrihute decreases in speed and endurance time to increase in body mass. Wbile (\therefore compressus has a mean body mass of 116.5 g , the cotal mass transporied is 20 g due to the additional mass of the shell. Nonetheless the average speed reported is still comparatively low. Body length is another size criterion used in comparing exercisc performance of different species. Based on the classification of Wood \& Randall (1981 a) a velocity of $0 \cdot 2 \mathrm{BL} \mathrm{s}^{1}$ in Coenobita would equate to 'moderate' exercise for Cardisoma camflex. However, again work performed is not a simple function of BL in hermit crabs due to the load of the shell.

Crabs which fell introme category of 'high performers' (Fig. 3) mantained velocity throughout 3 h of activity. Based on physiological parameters which we subsequently measured (M. G. Whatly, B. R. NoMahon, W. W. Burgeren \& A. W. Pinder, in preparation) it is our opimion that exereise terminated in the laboratory as a conseducnec of natural activity patterns and not in response to any physishogieal linutation.

Respiratory gas exchants

Standard

Standard $\dot{\mathrm{N}}_{\mathrm{O}_{2}}$ agreed with values reported in other decapods at comparable

 not a simple Imotion of lead rating. On transfering from a Vemta to an (Jferatostoma shell, (iterobita inc reased the tutal lead supported by only 25% yet $\dot{H}_{\text {es }}$ inctedsed by $2 \cdot 0$-foht. Wust animals which carry sliclls are physically attached to them. In hermit crabs, the shell is heid in various ways. The left uropod is cnlarged and modilied for houking on to the coluntella of the shell. Contraction of the longitudinal abdominal mustles presses the surface of the athdomen against the inner wall of the shell and the latit iso pairs of legs are pusted against the wall of the shell opening. All of these grpping mechantisms are energetically expensive which means that there is a posturid cost of shell habitation evert when the anmal is stationary. The increased cost of supporting visually larger or heavier shells is offset by the advantage afforded in territorial conflict (Hazletl, 197 (I).
Inactive M(o): has been reported in two other species of land crab (Herreid et al. 1979; Wood \& Randall, 1981a). In both cases the respiratory quotion (RQ) measured in the gas phase was significantly less than unity, agreeing with the present findings. One major deficiency acknowledged in respiratory studies in land crabs is the extent to which branchial water is retained and subsequently used for CO_{2} elimination. Based on low settled blood CO , tensjons mousured in another study (see M . (i. Wheatly, B. R. McMahon, W. W. Bnegeren \& A. W. Pinder, in preparationt, the aquatic route could be a najor pathway lor (0 e excretion in Cocenolnta compressus, and this would explain the spuriously low RQ values obtaned in the gas phase. 'The problem may be exacerbated in hermit crabs since they have a greater volume of water at their clisposal on account of the reservoir contained inside the whorls of the molluscan shell (see McMahon \& Burgeren, 1979; Wheatly, Burggren \& McMahon, 1084). Thas being trine, it is snrprisimg that gaseous Alon did not increase when crabs were remoned from their shtils. I lowever animals were considerably tratumatized in the process and so unloaded crabs were not truly gricsetnt. Wood \& Randall (1981a) atributc (lac low RQ to retention of resputary C()$_{2}$ for carapace information.

Wrize

Since our protocol involved intermituent sampling of a chosed respirometer, it was not ous original intention to determine the kinctics of gas exchange. However, the valucs we obtained at 30 min after the start of excreise did not increase significantly in the remaining two sampling periods and so 'steady-state" rates must have been allamed within that time. Since we know that lactate did not accumulate appreciably (see W. G. Wheatly, B. R. McMahon, W. W. Burgerer \& A. W. Pinder, in preparatitn), the acrobic response to exercise was relatively fast. A rapid increase in N1, \mathbf{r}_{2} has becn reported in response to submaximal excreise regimes in mammals (Cemeteli, Pentergast, Paganelli \& Rennie, 1979), cockroaches (llerreid, J'rawed \& Full, 1981) and blue crabs (Booth el al. 1982). By comparison, the tertestrial cratos (ardesoma and firtarimus (Herrcid et al. 1979, 1983) display slaggish and retuced aerobic responses. Bonth et al. (1982) were able to demonstate the rapidit, of the response in follhertes by recording scaphognathite and heart rates and () extraction. Phy siolsegical recordings were made on 50-m hermit crabs hy Wedaher \& Burggren (1909). Iloweser, reducing the tubing diameter in order to fit a 10 -g crab will a
 encombedfice. [n the present investigation we theredoc sacrificed this information in lavour of obtaning reliahle settled gas exchange data (see below and arguments raised by ferreid, 1981).
 with a varicty of other invertehrates (Herrend, 19 XI) and higher vertebrates (Jdylor et al. 1970;'Jaylor. 1973: Fedak, Pinshow \& Schmidt-Nielsen, 1974). Chatures in gait can frequently explairn aswitch to a corvilincar relitionship (Margaria, Cerretelli, Aghemo \& Sassi, $14\left(13\right.$). Nininum cost of transport ($\mathbf{N I}_{, \ldots n}$) was ealculated from the gradient of this linc ('Table 1) for all treatments. Expressed in terms of O? uptake, $\mathrm{H}_{\text {ran }}$ has previously been determined for wo other specics of land crab-Cra (Full \& Herreid, 1984) and Ocppode (Full \& I Ierreid, 1983). Botlispecies have a hody mass around $2 \cdot 5 \mathrm{~g}$ and an $\mathrm{M}_{\text {ran }}$ valuc of 0.0 x mmoi $\mathrm{O}_{2} \mathrm{~g}^{1} \mathrm{kmin}^{1}\left(=1.9 \mathrm{mlO}_{2} \mathrm{~g}^{-1} \mathrm{~km}^{1}\right)$. Sinee $\mathrm{VI}_{\text {run }}$ characteristically decreases with body mass on a double log plot, it is surprising that the $\mathrm{M}_{\text {run }}$ values for $l^{\prime \prime a}$ and Ocypode are less than hall the values presently measured in unloaded ('ue Nohito and must refleet some tundamental differences in muscular effieiency which makes the smaller crabs more apile.

Based on the original equation of 'Vaylor et al. (1970) relating $\|_{\text {rnt }}$ (in mul $\mathrm{O}_{2} \mathrm{~g}{ }^{\prime}$ kmin^{1}) to body weight (W^{\prime} ing) (i.e. $\mathrm{M}_{\text {run }}=8 \cdot 0,4 \mathrm{~W}^{(0.4}$), a hermit erah ot average mass $10 \cdot 5 \mathrm{~g}$ should have an $\mathrm{M}_{\text {run }}$ value of $3 \cdot 31 \mathrm{mlO}_{2} \mathrm{~g}{ }^{1} \mathrm{~km}^{-1}\left(=0 \cdot 131 \mathrm{mmol}()_{2} \mathrm{~g}^{1} \mathrm{~km}{ }^{1}\right)$. The value medsured was $5 \cdot 19 \mathrm{ml} \mathrm{O}_{2} \mathrm{~g}^{-1} \mathrm{~km}^{1}\left(=0 \cdot 20 \sigma_{1}\right.$ mmolg $\left.{ }^{1} \mathrm{~km}^{1}\right)$, which is slightly higher than the value predicted from the empirical equation. This may relate to the unorthodox gait they exhibit. Carelul observation revealed that hermit erabs lorace the chelipeds in the substrate and drag the shell atong in a fashom analogous to the use of handpoles hy a skier. Whis mode of transport will inerease frictional resistance and thereby energy expenditure (Demy, 1980). Together with data trom Jensen \& Holm-Jensen (1980) and Full \& I Ierreid (1984), the present findings suggest that 'Toylor's original equation for vertebrates is applicable to a range of invertebrates. If $\mathrm{M}_{\text {sun }}$ is a direct function of mass supported, then carriage of a 10 g g shell should theoretically increase $\mathrm{M}_{\mathrm{run}}$ to $6.62 \mathrm{ml}_{2} \mathrm{~g}^{-1} \mathrm{~km}^{-1}\left(=0.26 .2 \mathrm{mmol}_{\left.()_{2} \mathrm{~g}^{-1} \mathrm{~km}^{1}\right) \text {. The }}\right.$ value rreasured in loaded hermit crahs was double this which sugrests that it requires more enerery to carry each gram of an imposed load than an equivalent unit of body mass (ef. Taykir, I Ieglund, MeMahon \& looney, 1980).

The fact that extrapolated Y-intercept values for $\mathrm{M}_{0_{2}}$ and $\mathrm{M}_{\text {co }}$ showed gool agreement with values measured in inactive crabs suggests that the voluntary exercise regime we employed did not unduly stress the animals. Classical treadmill technigues customarily repori Y -intereept values $1 \cdot 7$-fold in excess of settled rates ('l'aylor et al. 1970; Herreid at al. 1979). This discrepancy may be attributed to prohlems with batance when speeds are involuntarily imposed in additon to elevation in basal metabolic rates by the use of respiratory masks and recording electrodes, ctc.

When running at an average speed of $0.6 \mathrm{cms}{ }^{1}$, loaded crabs increased $\mathrm{M}_{\mathrm{o}_{2}}$ by 3.4fokd producing an aerobic metaholie scope (ANS) of $219 \mu m o l O_{2} \mathrm{~kg}{ }^{1} \mathrm{~min}^{-1}$. The majority of decapods studied have an aerobic tactorial scope of $2 \cdot 5-5 \cdot 0$ (see 'Table l; Mc:Aahon, 1981) although Fnll \& Jlerreid (1983) report a 12 -Fold increase in Ocypode which is more in line with excreising tish (Brett, 1972) and mammals (Taylor el at. 1980). Carbon dioxide flux in loaded crabs did not increase correspondingiy ($2 \cdot 6$

 burupen \& A. W. l'inder, in preparation). The lactorial scope would appear tobe a Jutnetion ol loading since values of $1.6 \times$ were ohtained in unloaded wabs. lourthermore, ifn and Mene changed concomitanly in this group suggesting that the inequa$l_{1 t}$ in \dot{M}_{r} and $\dot{M}_{\text {er }}$ in loaded crabs relates to the presence of the shell water.

Grose cost of transport decreased with velocity to an asyuptote of $\mathrm{A}_{\text {ren }}$ (Fig. 6) which is thus largely hyputhetical since it is only ever approached at high speed. Interestingly ir transpired that $\mathrm{M}_{\mathrm{m} \text { n }}$ was first attamed at around $1.0 \mathrm{cms}{ }^{\text {I }}$ which is chose to the average velocity ohserved in the laboratory and in the field. Therefore crabs voluntarily clect to run at speeds which are least energetically expensive. Linloaded crabs could achieve the same energy conomy at lower speeds which was exactly what we observed in laboratory trials (cl. Fig. 5).

Rerucered

$\dot{\mathrm{I}}_{6}$, recovered rapills after the excreise bout as one would predict in the absence of an apprectable O_{2} dehcit. When water was made availuble during the recovery period it was used to replenish the branchial/shell reservoir and correct acid-base balane (sec M. (., Wheatly, B. R. MeMahon, W: W. Burggren \& A. W. Pinder, in preparation). The intense period of exchange which ensued raised Mo. but not to excrised levels. The presence of water during recovery facibtated CO_{2} excretion so that $\mathrm{It}_{\text {on: }}$ recorded in the gas phase was reduced.

This work was undertaken at the $V_{a(a s}$ Laboratory is the Stmithsonian Tropical Research [nstirute, Republic ol l'anama in April and Mat of 1983 at wheh time the sombr author was an Alberta Heritage loondation Postdoctoral I ellow. Agencies pratelully acknowledged for finaricial support are AllMFR (MGW), NSERC (no. A 3762 to BRM), NSF (no. PCN-80-03752 to WWB) and the Eniversity of Nassachusetts (WWH and AWP). I'he artwork was prepared by Shaton Harrison and Bull Adams.

REFERENC:S

 7. somp. Ihtrwist $148,111-131$.
 (other vertul)ratco, Reem Phrsiol. 14, 151-17\%).

 227, 1038-1044.
 244. R570-R536.
 109. $141 \mathrm{l} / 61$.

 \%. 7erpsy hoi. 27, 369-774.

 Phystel. 36. 109-120.
 response of Cecarcinus lateralis. (omp. Betochem. Phistol. 74A. 117-124.
 212, 331-333.

 137. 15]-15ヶ́.
 Hish. Reन . 32. 2ik 35

 1. 112-137

 4758.

Me Mafoy, B. K. (1981). Oxygen uptake and achd-bsic halance durme wetsity in decapod erustaceans. In
 Plerium

 80. $271-285$
 ${ }^{\prime}$ memmit, Vill \}, (ed. I. H Nantel), pp, 289-372. Níu I'ork: Academe Press.
 18 . $3,7-3711$
 independent estinate of standard desiation. /itmmentoa 31, 20-30

 J. x xp Phot $99.269-277$.
 Ifmustuftes lm . F. Thysul. 240. Kप4-b15S.

 latm, be cucunul crab. J. esp Zom, 218. 75-82.
 Sca. Sports 2. 177-181.

 f (xA. Pimi 97. 1-2 3

 if adtwoma rambex). Y. $6 \cdot x p$. Kood. 218, 7.22

 walkerge 7 linumeth 13. 195.

