
Physiological systems are inherently complex, and often far
more complex than usually appreciated. This truism, which in
many ways comprises a contrary position to Occam’s razor,
has emerged from repeated observations that physiological
systems are best assumed to be more complex than at first
apparent until we can demonstrate otherwise. For example, the
physiological regulation of water fluxes across biological
membranes was long assumed to be based on relatively simple
osmotic forces and bulk flow – until, that is, we learned the
important role of the family of aquaporins in regulating
membrane water permeability (e.g. Agre et al., 1995). In fact,
Agre et al. (1995) were sufficiently confident to write ‘The
long-standing biophysical question of how water crosses
plasma membranes has been answered by the recent discovery
of the aquaporins.’ Aquaporins were then evoked to explain
everything we hadn’t previously known about water fluxes –
until, that is, we learned of ‘water pumps’ in the form of a
K+/Cl– cotransporter in the choroids plexus epithelium, the
H+/lactate cotransporter in the retinal pigment epithelium, the
intestinal Na+/glucose cotransporter (SGLT1) in enterocytes
and the renal Na+/dicarboxylate cotransporter in Xenopus

oocytes, all of which can operate in the absence of both
favorable osmotic gradients and aquaporin expression (for
reviews see Zeuthen, 2000; Loo, 2002). These water pumps
emerged as an alternative mechanism for water transport –
until, that is, we learned that the functions of water pumps and
aquaporins can be interactive and complementary (e.g.
Zeuthen, 2002). Thus, ‘until, that is, …’ seems to be the most
useful paradigm as we await the next installment in the
description of transmembrane water transport!

Our historical progression in understanding of water flux in
guts, kidneys, eyes and other organs exemplifies the fact that
complexity riddles everything we do as physiologists. As
physiologists, we may admire complexity, but we also fear it,
because inherently complex systems are more difficult to study
and often far less predictable. Moreover, few of us can actually
offer any definition of this ubiquitous characteristic we call
‘complexity’. Just as we observe that Monet’s water colours
contain great beauty, but are at a complete loss to quantify the
metrics we have used in making this observation, we
acknowledge that physiological systems contain great
complexity, yet we can’t clearly express the metric we use to

3221The Journal of Experimental Biology 208, 3221-3232
Published by The Company of Biologists 2005
doi:10.1242/jeb.01762

Physiologists both admire and fear complexity, but we
have made relatively few attempts to understand it.
Inherently complex systems are more difficult to study
and less predictable. However, a deeper understanding of
physiological systems can be achieved by modifying
experimental design and analysis to account for
complexity. We begin this essay with a tour of some
mathematical views of complexity. After briefly exploring
chaotic systems, information theory and emergent
behavior, we reluctantly conclude that, while a
mathematical view of complexity provides useful
perspectives and some narrowly focused tools, there are
too few generally practical take-home messages for
physiologists studying complex systems. Consequently, we
attempt to provide guidelines as to how complex systems
might be best approached by physiologists. After

describing complexity based on the sum of a physiological
system’s structures and processes, we highlight
increasingly refined approaches based on the pattern of
interactions between structures and processes. We then
provide a series of examples illustrating how appreciating
physiological complexity can improve physiological
research, including choosing experimental models, guiding
data collection, improving data interpretations and
constructing more rigorous system models. Finally, we
conclude with an invitation for physiologists, applied
mathematicians and physicists to collaborate on
describing, studying and learning from studies of
physiological complexity.
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come to this conclusion. Even if physiologists piece together
some definition of complexity involving ‘patterns of afferent
pathways’ or ‘numbers of possible target tissues for a
hormone’ or ‘elements of motor responses’, we are typically
unable to indicate quantitatively, or even qualitatively, how
complexity changes as the number of afferents, target tissues
or motor responses changes. Nor can we readily point to any
applied mathematical or statistical tools to help us deal with
this ill-defined complexity. Finally, few physiologists in any
precise analytical way actually shape our experimental design
specifically based on the perceived degree of complexity of the
systems we work on.

We will argue in this essay that an appreciation and
awareness of the implications of complexity is essential for a
deeper understanding of the physiological systems we study.
To achieve this deeper understanding, we feel it is necessary
to temporarily stand back and take a modestly philosophical
view of the field of physiological complexity. Existing
paradigms have tended to serve a relatively narrow
physiological audience and are not readily exported to other
sub-disciplines. For example, there is considerable interest in
complexity as revealed in time series analysis of heart rates,
endocrine secretion and other physiological phenomena (e.g.
Richman and Moore, 2000; Meyer and Stiedl, 2003; Costa et
al., 2005). Yet, such non-linear dynamic analyses and related
attempts to define complexity provide little insight and even
fewer tools to a physiologist working on, for example, the
complex interactions of multiple hemoglobins on in vivo blood
oxygen transport. 

We also strongly advocate that additional interdisciplinary
work involving mathematicians, physicists and physiologists
(and, by extension, all biologists) is needed to increase our
understanding and exploration of complex physiological
systems. The first step in such collaboration is understanding
each discipline’s vocabulary. Indeed, even definitions are
highly problematic, because common uses of words such as
‘complexity’ and ‘chaos’ are often at variance with the more
precise and narrower definitions used by mathematicians.
Thus, while the jargon appears the same, the ideas being
discussed in disciplines may be quite different. For example,
from a mathematical perspective, the behavior of a truly
chaotic system cannot be precisely predicted in practice,
whereas a system considered chaotic by a biologist may be
viewed as predictable if only enough data are collected. A
mathematician might then counter by saying that the biological
system was not complex but merely complicated. While these
semantic issues seem pedantic, they have presented substantial
barriers to informed collaboration between disciplines. To
assist this bridging process, let us now briefly explore some
mathematical views of complex systems before moving on to
practical implications for physiologists.

A mathematician’s view of complexity
Complex systems science encompasses a wide array of study

– from fractals to chaos theory to neural networks. Despite the

considerable literature on complex systems in mathematics,
physics and, increasingly, biology, there is at present not only
no unifying theory of complexity but also no consensus
definition of what it means for a system to be complex. There
is, however, the general conviction that the various
manifestations of complexity are examples of some
fundamental paradigm. The study of specific systems, as well
as the broader pursuit of an integrated framework, has already
produced an essential change in our understanding of how
systems operate and interact with one another. This section
reviews some of the mathematical approaches to complexity
that have led to this change. Of course, in such a short
discussion, many topics in complexity will be neglected. The
emphasis will be on developing principal themes in complexity
and considering their relevance to physiology. An introduction
to various mathematical aspects of complexity can be found in
Bossomaier and Green (2000), Cambel (1993), Wolfram
(2002) and Kauffman (1993). 

Chaotic systems

A highly productive area in complex systems science is
chaos theory. Definitions of a chaotic system differ across
disciplines, but two characteristics occur in most descriptions.
First, in chaotic dynamical systems there are trajectories that
do not converge to fixed points or become periodic. (A
trajectory in this context is the state of a system as a function
of time.) Rather, the trajectories exhibit aperiodic, highly
irregular behavior. Fig.·1 shows trajectories (in this case, time
series) for a set of hypothetical systems. Fig.·1A shows a
system that converges to a fixed state; the system in Fig.·1B is
periodic; and Fig.·1C gives the trajectory for a chaotic system.
Ventricular fibrillation is a commonly cited physiological
example of a chaotic trajectory.

The second basic property of chaotic systems is what
mathematicians call ‘sensitive dependence’ to initial
conditions. This means that small differences in the initial state
of a system can lead to dramatic differences in its long-term
dynamics (popularly known as the ‘butterfly effect’). Thus,
limited precision in measuring the initial state precludes
accurate predictions of future states of such systems. The
inaccuracy of long-range weather forecasts is a popular
example of sensitive dependence in chaotic systems. In
physiology, an example would be the pattern of change in
blood and lung gases and acid–base balance during diving in
a vertebrate. Arterial and alveolar oxygen (PO∑) and carbon
dioxide (PCO∑) partial pressures and blood pH are rarely
exactly the same at the beginning of consecutive dives and, not
surprisingly, physiologists have long appreciated that the
precise pattern of change in respiratory gases and blood
acid–base balance from dive to dive is very difficult to predict
(Burggren and Shelton, 1979; Butler and Jones, 1982, 1997;
West et al., 1989; Castellini and Kooyman, 1989).

As early as 1890, Henri Poincare reported sensitive
dependence while investigating the classic ‘three-body
problem’. He observed that small differences in the initial state
of the set of equations governing the interactions between the
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earth, moon and sun produce large differences in the
subsequent time dynamics of this astronomical system. One
way to characterize this sensitive dependence is to determine
the rate of separation of trajectories starting out adjacent to one
another. In chaotic systems, trajectories separate at an
exponential rate. Note that a large number of system

components is not necessary for sensitive dependence to exist
– Poincare (1890) only needed three. Moreover, sensitivity to
initial conditions can arise even when the system description
is relatively straightforward (although some nonlinearity needs
to be present).

The link between sensitive dependence and the ability to
predict future states of the system naturally suggests a
connection between complexity and information theory.

Information theory

If a system does exhibit sensitivity to initial conditions, then
imprecise knowledge of those conditions leads to increased
uncertainty in the future states of the system. Another method
for characterizing this sensitivity is to quantify the information
gained or uncertainty removed from observing the system. To
illustrate the basic idea, suppose that you knew a roulette wheel
was rigged to always deliver the number 17. No uncertainty on
the outcome of a spin of the wheel would be removed by going
through the process of spinning it. In this case, the entropy or
amount of uncertainty about the outcome of a spin would be a
minimum of 0. On the other hand, if the wheel is balanced and
gives random numbers, then information is gained –
uncertainty is removed – by observing the outcome of a spin.
Entropy is maximized when no outcome is any more likely
than any other (a fair wheel). Analogously, for a simple (non-
chaotic) dynamical system, little information is gained about a
trajectory from successive observations. If the initial position
is known with a certain degree of accuracy then relatively few
observations are needed to maintain approximately the same
level of accuracy. To characterize the difference between
simple and chaotic systems, mathematicians and physicists use
a measure known as the Kolmorgov–Sinai (KS) entropy.
Intuitively, the KS entropy measures the average information
gained from successive observations of a system. For simple
systems, the KS entropy is 0. In chaotic dynamic systems, the
KS entropy is positive and is a fundamental property of the
system. Information is continually gained from successive
observations of chaotic systems. Thus, these systems exhibit
behavior more characteristic of random (stochastic) systems,
even when the chaotic systems are completely specified and
deterministic. For chaotic systems, the challenge of predicting
long-term dynamics arises not from lack of knowledge about
the system’s structure but from sensitive dependence and
limited precision in measuring the state of the system at any
given time.

Modifications of KS entropy, as well as other metrics, have
been used to measure irregularity or lack of predictability of
physiologically derived time series (Pincus, 1991; Richman
and Moorman, 2000; Costa et al., 2002). When applied to
biological data, the objective of these metrics is to quantify the
complexity of a time series in order to make inferences about
the underlying physiological system producing the series
(Pincus, 2001). Some of the literature goes further to equate
the complexity of the system with the complexity of the time
series, as measured by the time series metric (Costa et al.,
2002). However, we argue that the primal definition needed is
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Fig.·1. Time series trajectories. (A) System behavior converges to a
fixed state. Such a pattern is commonly seen in the assessment of
phase lag and damping in blood pressure recording systems.
(B) Periodic system. Such patterns are evident in stable heart rate
recordings. (C) Aperiodic trajectory characteristic of a chaotic system.
Patterns like these are characteristic of the abnormal beating of hearts
in fibrillation.
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just ‘what is a complex system’, and it should be something
more than a system that produces a complex time series.
Moreover, as mentioned above, solely focusing on a time series
view of complexity provides only limited insight to
physiologists.

Emergent behavior

Emergent behavior is one of the most compelling but least
well-defined concepts in complex systems theory (Morowitz,
2002). Emergent behavior is also immediately relevant to
animal physiology. The basic idea of emergence is that, as a
whole, a system may exhibit behavior that is unexpected based
just on descriptions of its components and their interactions.
Assertions about emergent properties of systems range from
the fairly innocuous – ‘the behavior of the system is surprising
given the relatively simple description of the components’ – to
the more portentous – ‘the rules governing the behavior of the
system are fundamentally different and independent from the
rules governing the components’. (See, for instance,
Mulhauser, 1998.) Both the former (limited) and latter
(extensive) interpretations of emergent behavior address
questions of level, hierarchy or scale. The limited form takes
the approach that emergent behavior at the system level is
logically dependent on the rules at the component level,
however surprising the higher-level behavior. At the same
time, the limited view acknowledges the advantage of adapting
descriptions of phenomena according to the level at which they
emerge. For example, descriptions of chemical processes
generally exclude references, without denying their relevance,
to the laws of physics underlying the processes.

The extensive view of emergence has a more fundamental
implication: it is not just that the higher-level behaviors were
not predicted, rather they could not have been deduced from
the lower-level rules. A hierarchy of rules is necessary – not
just useful – for describing such systems. The extensive
perspective, while not explicitly stated, is often implied in
statements about the observance of emergent behaviors. Care
must be taken in evaluating such statements in the absence of
a clear unambiguous definition of emergence. Further caution
should be exercised since what sometimes appears to be an
emergent property of a system may merely be an artifact of
simulation constraints (cf. Gray, 2003).

A fascinating aspect of emergent behavior is self-
organization. Self-organization addresses problems related to
governance mechanisms for physiological systems, how these
systems develop and how they may have evolved (see
Gorshkov and Makar’eva, 2001; Burggren, in press a). Indeed,
physiologists and cell and molecular biologists are now using
a self-organization construct to look at systems as diverse as
protein self-organization in E. coli (Howard and Kruse, 2005),
neural behavior in cortical minicolumns (Lucke et al., 2004),
mesoderm differentiation in the embryo (Green et al., 2004)
and signal transduction in cardiac muscle stimulated by
epidermal growth factor receptor (Maly et al., 2004). Although
an active area of investigation with potentially deep
implications to physiology, self-organization is beyond the

scope of this short review. However, an introduction into the
literature can be acquired from reviews such as Wolfram
(2002), Morowitz (2002), Bak (1996) and Jensen (1998).

Working descriptions of complexity

Even with all of the deep, rich theory addressing complexity,
mathematics has yet to provide precise definitions that readily
map onto the biological world. However, as discussed above,
there are central themes that allow us to move beyond the
colloquial use of terminology. In particular, complexity is
intimately related to the degree by which system dynamics or
emergent behavior can be predicted in practice. There must
also be significant (e.g. nonlinear) interaction between
components. These themes are reflected in the system
descriptions we give below. We will consistently use these
descriptions when referring to types of systems. When the
terms ‘complex’ or ‘complexity’ are used without ‘system’, a
more colloquial use of these words may be assumed. Note that
our intent is not to provide the definition of ‘complex systems’.
Our purpose is merely to start the journey down the path
towards a common vocabulary between mathematicians,
physicists, animal physiologists and other biologists.

Simple systems

A simple system may have few components and little
interaction between components. System dynamics and any
emergent behavior are straightforward and easy to predict. A
physiological example would be a simple nerve synapse in
which an action potential in the presynaptic neuron creates an
action potential in the postsynaptic neuron.

Complicated systems

A complicated system may have many components,
however the interaction between components does not
introduce any insurmountable obstacles to predicting the
behavior of the system – it may be difficult but it can be done.
The nerve network found in the sea slug Aplysia appears to be
a complicated system as opposed to complex. While the
behaviors of Aplysia may be manifold, they are understandable
and can be predicted.

Complex systems

A complex system is characterized by inherent limitations
in the ability to predict the long-term or emergent behavior of
the system. It is not that prediction is merely hard or that the
system has not been completely specified. Rather, the lack of
predictability arises from the nature of the interactions between
system components and often from the inability to measure the
state of the system at any time with infinite precision. An
obvious candidate for such a system is the human brain.

Seeking a complexity definition relevant to physiology
Within the context of the descriptions of simple,

complicated and complex systems given above, can more
operational definitions for complexity relevant to biology
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generally, and physiology specifically, be developed?
‘Biocomplexity’ is, of course, a burgeoning field of study, and
might be expected to offer some practical definitions, but often
biocomplexity is used in its colloquial sense to describe ‘really,
really intricate biological systems’, and biocomplexity studies
frequently involve categorizing the components of a system
(usually an ecosystem), with less emphasis on specifying the
rules that govern their interactions and the predictions of
behavior that might subsequently emerge. Fewer studies
approach biocomplexity based on mathematical modeling
drawn from complexity science (e.g. Anderson, 2003; Ingber,
2004) and fewer still attempt to develop biocomplexity
applications relevant to physiology (but see, for example,
Freeman et al., 2001; Nicholson et al., 2004). Still, there are
several approaches to describing complexity that we, as
physiologists, can evaluate and begin to use in our
experimental design and data interpretation.

Summing structures and processes

A number of intuitive definitions of physiological
complexity can be offered, but each has considerable
limitations. Rather straightforward is the ‘sum of all parts’
interpretation of complexity, described in the ‘constructability
theorem’ of Nehaniv and Rhodes (2000). Essentially, this
theorem holds that ‘a biological system is the sum of low-
complexity, interacting components’ (see Burggren, in press a).

Simply counting parts or structures as a way of categorizing
complexity is a time-honored, anatomical approach. Consider
nervous systems. From a structural perspective, the simple
nerve net of Aplysia is considered less complex than the radially
arranged nervous system of the echinoderm Asterias, which in
turn is viewed as less complex than the bilaterally distributed,
ganglion-based nervous system of decapod crustaceans or
vertebrates. There is an attendant assumption of progressing
complexity from sea slug to starfish to snake because of an
anatomical progression, as measured by numbers of structures,
cell types, tissue types, etc. As physiologists, we often fall into
a similar trap. Instead of equating the numbers of structures to
complexity, we merely equate the number of processes to
complexity. Yet, neither a structure- nor processes-based view
adequately defines the true complexity of a nervous system. For
example, the neural network of Aplysia is relatively simple as
defined by the numbers of neurons and its repertoire of
behaviors (see review by Croll, 2003). Yet, this ‘simple’ neural
system producing ‘simple’ behaviors is capable of complex
information processing (Brembs, 2003; Croll, 2003) and, as
such, has become a contemporary model for investigating the
role of neural plasticity in non-associative and associative
learning (Cropper et al., 2004; Leonard and Edstrom, 2004).
Indeed, Bullock (1993, 1999, 2003) challenges us to expand our
view of nervous system complexity beyond structures and
processes to include the numbers of transactions, sensory
discriminations and behavioral alternatives. Such an approach
begins to address the issue of the numbers of possible
interactions of components in addition to numbers of
components in complex systems.

Interactive approaches
If counting structures or processes yields the sum of the

parts, then examining the potential interactions between parts
and processes describes ‘a whole that exceeds the sum of the
parts’. Indeed, this particular phrase, although not particularly
helpful in a quantitative sense, is appearing more and more
frequently in lay literature as symbolic of complexity and
emergence thinking (e.g. Morowitz, 2002; Laughlin, 2005).
How do we define the whole? Nehaniv and Rhodes (2000)
have offered several axioms for describing complexity in
biological systems. Their ‘non-interaction axiom’ can be
simply paraphrased as ‘complexity only increases if the
combined components actually interact’ (Burggren, in press a).
Interactions among components are typically governed by a set
of rules. Consider again the nervous system, whose rules
include one-way information transmission across synapses and
a fixed size of an action potential conducted by any given
neuron. Bullock (1993, 1999, 2003) has emphasized that the
measure of brain complexity is most accurately graded by what
he refers to as ‘connectivity’ between neural components,
which in turn leads to memory and larger numbers of more
complex behaviors. 

If a view of physiological complexity based on interaction
is to provide practical guidance in the design of physiological
experiments, any definition of complexity used by
physiologists has to account for at least three prominent
attributes of complex physiological systems: (1) lack of high
predictability of output; (2) sensitivity to initial conditions; and
(3) non-linear interactions between structural components. Let
us consider each in turn.

Even the best-understood physiological systems are not
entirely predictable. A tachycardia induced by decreased blood
pressure is certainly an anticipated response in most tetrapods,
but physiologists don’t expect the magnitude of this
chronotropic reflex to be the same each time a blood volume
or blood pressure drops due to the variability inherent in all
cardiovascular control systems (e.g. Ursino and Magosso,
2003). Indeed, as physiologists, we are suspicious of small
standard deviations (whereas a physicist, for example, might
be suspicious of large ones). The magnitude of uncertainty of
output from a regulated physiological system generally equates
with the degree of complexity of the system regulating it. 

Complex physiological systems are sensitive to what
mathematicians would call ‘initial conditions’ – that is, the
values of the system variables at the point at which a series of
measurements is made. Returning to the example of the
interaction of blood pressure and heart rate in baroreflexes, the
change in heart rate that one anticipates in response to a given
reduction in blood volume will depend greatly upon the initial
blood volume and initial blood pressure as the experiment
begins. 

Finally, when we consider interaction as a measure of
complexity, we must account for non-linear interactions
between structural components. Putting it differently, not all
components in a complex system will interact equally or
identically. Nehaniv and Rhodes’ (2000) ‘bounded emergence
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axiom’ addresses this perspective thus: ‘interaction between
components increases complexity, but one-way interaction sets
bounds on the possible increase’ (see Burggren, in press a).
For a physiological example, consider respiratory development
in developing anuran amphibian larvae. Just prior to
metamorphosis, many anuran larvae use a combination of gills,
skin and lungs (three components) to breathe air and water
(two processes). While respiratory complexity in these
intermediate developmental stages could be described as the
sum (N=5) of all the components (N=3) and all the processes
(N=2), a more meaningful complexity index of anuran
respiratory development is compiled from the product of all
respiratory components (N=6) and all respiratory process
(Burggren, in press a, b). However, mindful of the bounded
emergence axiom described above, not all respiratory organs
are involved in all processes in this example of anuran
respiratory development. For example, gills do not interact
effectively with air, nor lungs with water! Thus, while
complexity certainly increases during development, our
description of changes in complexity during metamorphosis
must be tempered by the nature of actual interactions between
the various components. Moreover, complex dynamics can
arise in systems with relatively few components and
straightforward interaction rules. Thus, a corollary to Occam’s
razor appears to hold: complex behavior does not necessarily
imply a system with complicated sets of components and
interactions.

Types of physiological complexity: kinetic vs potential

The notion that true complexity depends on the actual
pattern of interaction between components leads to another
perspective of complexity. Many physiological regulatory
systems have present or future capability for complex actions.
Must they actually be involved in regulatory actions to confer
complexity to the system? One might similarly ask ‘is an
automobile sitting silently in a garage only “potentially”
complex until its engine is started and it is driven down the
street?’ Answering such a question may have more practical
implications than might at first be imagined. Consider how
well the concept of kinetic vs potential energy has served the
physical sciences, dating back beyond Ludwig Boltzman and
James Maxwell to Rudolf Clausius and even back to Robert
Boyle. School children around the world are taught early on
about the potential energy stored in a stretched elastic material,
only released as kinetic energy performing work when the
elastic material recoils. As an example of applying this concept
of potential vs kinetic energy to biological complexity,
consider physiological development. A fertilized egg has all
the ‘potential complexity’ of the most complex period in that
animal’s life cycle. The egg’s ‘kinetic complexity’ only
becomes evident when it develops physiological systems that
are actually regulated (again underscoring the importance of
the non-interaction axiom, where complexity only increases if
components actually interact). As another example, consider a
relaxed muscle fiber loaded with ATP, and with actin and
myosin poised for cross bridge formation. As long as the fiber’s

membrane remains polarized, it exhibits only potential
complexity. Of course, with the release of acetylcholine from
a motor neuron onto the fiber’s post-synaptic receptor, the
depolarization of the muscle membrane, and the accompanying
Ca2+ stimulated actin–myosin cross bridge formation leading
to fiber shortening, the muscle fiber’s kinetic complexity that
was waiting in the wings now becomes amply evident in
muscle fiber contraction! To show how potential and kinetic
complexity can be nested, consider that while a relaxed muscle
might be considered to be in its state of greatest potential
complexity, this derives from the perspective of actin and
myosin cross-bridge formation. Yet, from the perspective of
considering regulatory proteins (troponin, tropomyosin), the
kinetic complexity of these proteins and their interactions with
myosin might be at its greatest during muscle relaxation. Thus,
kinetic and potential complexity are highly context dependent.

Do the concepts of potential and kinetic complexity help
shape physiological experimentation and the interpretation of
those experiments? If we fail to acknowledge the potential
complexity of a poorly understood system, we then mistakenly
view all physiological observations as reflecting the maximum
possible complexity of that system. Not acknowledging the
potential complexity of the system leads us to underestimate
the complexity of its ultimate emergent behaviors. For
example, a kidney processing urine in a human showing water
and salt balance does not reveal its potential ability to secrete
highly hypertonic urine. Only after the salt load of, for
example, a typical fast-food meal does antidiuretic hormone
regulation of collecting duct water permeability become
evident, revealing a higher level of kinetic complexity of the
kidney. Thus, while the complexity of well-understood
systems seems obvious, how much potential complexity
remains undiscovered until we make observations under new
configurations of physiologically relevant conditions?

Complexity and reductionism
The mathematician Georg Polya remarked that if there is

a difficult problem that you don’t understand, then there is
also a simpler problem you don’t understand (Polya, 1957).
The implication of this statement has been a mainstay of
mathematics and science. To understand a system – whether
a theoretical mathematical construction or a complicated
physiological regulatory system – we are taught to break it
down into smaller observable processes and study those first.
The reductionist approach has served science in general and
physiology in particular remarkably well. Indeed,
physiologists (as well as physicists, chemists and
mathematicians) have a long tradition of breaking down
complex systems into simpler components for individualized
study. [In our experience, physiology graduate students are
better car mechanics than most other biologists, because they
are used to diagnosing systems by breaking them down and
swapping out various components until the particular
component of interest (e.g. the defective car part) is
identified.] For example, the discovery of the regulation of
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gastric secretion was simplified through many separate series
of experiments focusing on chronological phases of secretion
(e.g. cephalic phase, gastric phase), the individual secreted
hormones and their pathways for synthesis, the separate
chemoreceptive and mechanoreceptive regulation of gastric
secretion, etc. This same pattern of ‘divide and conquer’ is
repeated in studies of the cardiovascular, nervous and
osmoregulatory systems. As physiologists, we appreciate and
admire complexity, but often our proximate goal is to divide
a complex system into many simpler components for
individualized study – i.e. convert kinetic complexity into
potential complexity. Essentially, we are focused on (if not
fixated on) the approach of holding all but one variable
constant, creating a single dependent variable whose
performance we can monitor. The task of assembling the
newly emerging pieces of the puzzle into a more
sophisticated understanding is viewed by most participants as
a task for another day, if not a task for other more patient
researchers.

Unfortunately, for reductionist proponents, theoretically
‘reassembled’ systems often do not perform as predicted by the
reductionist-derived models employing the system’s
components, in part because their interactions are often not
fully accounted for. Variation between predicted and actual
behavior is typically attributed to system noise. Indeed, system
noise is often granted some meta-physical identity of its own,
averting the worrisome conclusion that the real system may
actually be more than the sum of its parts. However, this very
conclusion may be inescapable when the observed variability
is large. Interestingly, reductionism without more sophisticated
attempts to reassemble the whole appears to be increasingly
viewed in retrospect as an important stepping stone – a step
that was helpful along the way of understanding the meaning
of everything physiological but is no longer the sole pathway
(or even a desirable pathway). Advocacy for a balance between
reductionism and synthesis is waxing (for reviews, see Rose,
1998; Roenneberg and Merrow, 2001; Moalem and Percy,
2002; Van Regenmortel, 2002; Powell, 2004; Burggren and
Warburton, 2005). Indeed, as Neugebauer et al. (2001)
comment, ‘The part is never the whole, and it is impossible to
understand the whole through limited dissections of its parts.
The understanding of complex systems requires approaches
other than those of explanatory reductionism.’ Importantly, we
are not advocating an abandonment of reductionism (as some
would) – instead, we seek to stimulate a discussion regarding
alternative and/or complimentary approaches that
physiologists can use to study complex systems.

The value of understanding physiological complexity
Intensified interactions between mathematicians, physicists

and physiologists will help develop concepts of complexity
that jointly satisfy mathematical expectations and
physiological reality. Until that occurs, how do physiologists
interested in complexity actually go about improving
experiment design and data interpretation?

Choosing appropriate models

If we appreciate physiological complexity – both potential
and kinetic – we may be able to avoid choosing animal systems
or animal models that are unnecessarily complex, thus
contributing to our near-term understanding rather than
confusion. The roundworm Caenorhabditis elegans, with just
under a thousand cells, is arguably one of the most useful
animal models to emerge in decades. Indeed, it is a prime
example of this approach of avoiding unnecessary complexity.
Consider, for example, the complexities of hypoxic tolerance
in metazoans, which involves a huge array of
metabolic/biochemical responses, ranging from evolutionary
adaptations such as increased O2–hemoglobin affinity to acute
physiological adjustments such as hyperventilation.
Physiologists have long been interested in hypoxia tolerance
for a variety of reasons, spanning basic research in
understanding the evolution of air breathing in fishes (Randall
et al., 1981; Little, 1983; Graham, 1997) all the way to treating
ischemia and mycocardial infarctions in human patients
(James, 1997; Kloner and Rezkalla, 2004; Kolar and Ostadal,
2004). While the study of lungfish or mice, respectively, has
certainly provided a level of understanding of hypoxia
tolerance in vertebrates, some of our most exciting revelations
have emerged from using the relatively simple (at least,
physiologically) C. elegans to investigate the biochemistry and
physiological genomics of hypoxic tolerance (Nystul et al.,
2003; Padilla et al., 2003; Treinin et al., 2003).

Given the utility of the less complex C. elegans, should we
direct all of our resources toward this model? Emphatically
not! For all its strengths, C. elegans does not exhibit the
behaviors of more complex metazoans – it does not generate
internal circulatory convection and does not actively ventilate
dedicated respiratory organs. From an overarching integrative
perspective, recognizing the kinetic physiological complexity
of C. elegans allows us to predict more accurately the as yet
unrevealed potential complexity of more derived animals. 

Guiding data collection

Complex systems are often characterized by considerable
dependence on initial conditions (e.g. sensitivity of ventilation
rate to initial states of metabolism, body temperature, blood
pH). Small changes in environmental conditions may produce
not only large but also unexpectedly large subsequent
variations in system performance over time. Thus, complex
systems require much more frequent monitoring with multiple
observations over time to be able to accurately forecast their
near-future emergent behaviors. Whether the system turns out
to be complex or ‘merely complicated’, near term predictions
are improved by a higher sampling frequency. As an example,
consider the different conclusions that might be drawn from
differences in heart rate sampling frequencies when cardiac
patterns are very intricate, as in the pupae of the moth Manduca
sexta (Fig.·2). The more elaborate the observed heart rate
pattern (or any other such physiological variable) being
measured, the greater is the sampling rate needed to reveal the
overall pattern.
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While this relationship between sampling frequency and
pattern delineation may seem obvious, an important but less
obvious implication of sampling frequency comes from trying
to predict future behaviors of a system based on past, measured
ones. If the goal is prediction, then the more complex the
system, the shorter the time window over which predictions are
likely to remain accurate. Thus, in more complex systems,
higher sampling frequencies are necessary to maintain accurate
predictions of subsequent system behavior. While also true for
complicated systems, the rate at which predictability degrades
is much faster for complex systems. Fig.·3 illustrates this notion
by comparing predictability (and its inverse, uncertainty)
between a simple, complicated and complex system as a
function of sampling frequency. The longer the period after a
measurement, the more uncertain we are of the state of the
system. Just as more frequent sampling provided a better
overall picture of heart rate in Manduca sexta, more frequent
sampling helps maintain a more accurate track of physiological

system performance. How might this help experimental
design? If a system is simple or merely complicated, then an
experimenter needs to factor in less sampling into their protocol
than if the system is truly complex. As a physiological example
of degradation in predictability, consider the blood chemistry
and apnea length of a diving animal such as a freshwater turtle
or seal. We know that both falling arterial PO∑ and falling
arterial blood pH during a dive will stimulate the termination
of diving and the onset of lung ventilation (cf. Hochachka,
2000). These straightforward rules nonetheless lead to very
complex patterns of intermittent breathing in diving animals
(West et al., 1989; Williams et al., 2000). Predicting future dive
durations only comes from detailed knowledge of not only the
rules but also the blood chemistry and duration of recent dives,
which in turn only comes from frequent sampling. In the
freshwater turtle Pseudemys scripta, for example, dive length
can be predicted in part from the pattern of PO∑ change in lung
gas and arterial blood: an initial slower rate of decline during
the early minutes of the dive typically signals a longer dive
length (Burggren and Shelton, 1979). Such patterns are only
revealed by frequent lung gas and blood sampling, but such
frequent sampling would be a waste of time if, for example, the
goal was to correlate blood gases at the end of diving to apnea
length (as opposed to predicting diving length). Thus,
appreciating physiological complexity can lead to more
efficient data sampling protocols.

Improving interpretation of data from complex systems

The more we appreciate potential and kinetic complexity as
it applies to physiology, the less likely we are to misinterpret
simple outputs as coming from what we mistakenly think are
simple physiological systems. To illustrate this point of view,
a mathematician tends to judge the complexity of a system by
the complexity of the system’s emergent behavior or output.
The more complex the system, the more complex and
unpredictable its output. Yet, very complex physiological
regulatory systems are often characterized by quite simple and
predictable emergent properties, in contrast to a
mathematician’s expectations. Thus, for example,
thermoregulation in a typical mammal results in a simple
emergent behavior – a body temperature of ~37°C – despite
radiation, convection, diffusion and conduction resulting in a
variety of conditions and mechanisms for both heat gain and
loss. Strictly on the basis of its simple output then, a
thermoregulatory system might be misclassified as non-
complex. Yet, this very intricate physiological regulatory
system (as evident from the number of parts and their
interactions) has evolved to be complex precisely so that its
output is highly predictable. In this respect, the complexity of
the external environment must be matched with an equally
complex internal regulatory system, and the result is a
disarmingly simple behavior. As long as we appreciate
physiological complexity, even when masked by simple
emergent behaviors, we can guard against overly simple
interpretations (recall how, until recently, we thought that
aquaporins described all aspects of transmembrane water flux).
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Fig.·2. Effect of sampling frequency on apparent complexity of heart
rate (fH) patterning in the adult moth of the tobacco hornworm,
Manduca sexta. (A) Heart rate in the resting, intact adult moth at
20°C. Time marker in 10·s intervals (after Smits et al., 2000).
(B–E) Effect of sampling frequency on the apparent heart rate pattern
observed during a 1.5·min period. Note how in B and C the same low
sample frequency can yield a heart rate of zero or alternatively a range
from 20 to 70·beats·min–1. As sampling frequency increases, the
apparent complexity of the observed pattern of heart rate increases.
Note that the potential and kinetic complexity remain identical in each
case – the change is merely an artifact of sampling frequency.
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As physiologists, we have not yet defined complexity, but
we have nonetheless allowed the concept to influence our
perceptions of the progression of everything from evolution to
development. Consider, for example, the interpretation of data
relating to complexity change during ontogeny. Physiologists
typically view complexity as increasing progressively – even
linearly – with development. Yet, a view of complexity driven
by an integrative view using anatomical components,
physiological processes and their interactions reveals
prominent examples in vertebrate development where
physiological complexity actually peaks at some intermediate
point in the life cycle, with terminal, mature stages actually
being less complex (Burggren, 2005, in press a, b). In the
larvae of a terrestrial amphibian such as a terrestrial toad, for
example, early stages are characterized by water breathing with
gills and skin. As the larvae develops, however, air breathing
with the lungs begins to occur, such that the late larval stage
is characterized by two respiratory processes (water breathing,
air breathing) and three sites of gas exchange (gills, lungs,
skin). Finally, with the advent of metamorphosis, the terrestrial
toad ‘reverts’ to a simpler respiratory situation where it
breathes air with lungs (and marginally, with skin). Thus, in
this amphibian, respiratory physiological complexity builds

during larval development to a peak just before
metamorphosis, then declines considerably in the terminal
stage.

The progression of complexity during evolution of
physiological systems might be viewed similarly to that for
development. A progressive increase in complexity is seen as
a hallmark of evolution of physiological processes (e.g. Maina,
2002; Morowitz, 2002; Battail, 2004). Because we tend to view
the most derived (‘highly evolved’) forms as having the most
complex physiology, we can mistakenly overlook, or at least
de-emphasize, some very sophisticated physiology. An
excellent example in this regard is the cardiovascular
physiology of reptiles. Some physiologists would view the
chelonian and squamate heart as a three-chambered heart –
essentially a defective mammal heart desperately awaiting
‘evolutionary repair’. In fact, the heart of turtles and snakes is
a sophisticated blood delivery system capable of responding to
waxing and waning levels of oxygen in the lungs and
redistributing blood in a highly efficient manner to the oxygen-
consuming tissues during intermittent breathing (for reviews,
see Burggren et al., 1997; Axelsson, 2001; Hicks, 2002). The
heart of the crocodile is even better adapted in this regard,
operating as a dual-pressure pump with separate pulmonary
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Fig.·3. Changes in predictability and
uncertainty as a function of sampling
frequency in simple, complicated and
complex systems. (A) When sampling
times are frequent, the degree of
predictability is high (uncertainty low) as
time progresses from the last sampling.
Note also that the rate of degradation is
largest in complex systems and smallest
in simple systems. (B). Predictability is
degraded (uncertainty increases) rapidly
at lower sampling frequencies.
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and systemic blood streams during lung ventilation, but then
being able to generate a progressively larger pulmonary by-
pass during extensive periods of breath holding. The latter
cardiovascular system, by virtue of its more complex array of
physiological responses, is better suited to intermittent
breathing and diving than the circulation of diving mammals,
which is actually constrained by having permanently divided
pulmonary and systemic circuits.

These examples show that developmental or evolutionary
stages currently viewed as intermediate can be more, rather
than less, complex than more mature or more evolved stages.
We are especially likely to overlook complexity in
developmentally or evolutionarily intermediate stages if
emergent behaviors of physiological systems are simple on first
examination. Clearly, we can meaningfully look for signs of
complexity in places where it may have been formerly
overlooked.

Modeling complicated physiological systems: focus on
prediction

Unlike economists or astronomers, physiologists are
typically more focused on the ‘here and now’ than the future.
We make physiological measurements (e.g. blood pressure,
urine formation, neural discharge) and then interpret what
these data mean. If we want to know what happens in the
future, we often just wait until the future arrives, and then make
the measurement! At the same time, many physiologists are
interested in modeling data, particularly in an effort to
understand complicated, if not complex, systems. If a model
allows prediction of complex behavior a short time into the
future, then that model is particularly robust, as it incorporates
not only components and their interactions but also how these
interactions influence in the near term. As physiologists
develop more and more predictive models and as we come to
learn the impact of complexity on our models, then we can
begin to use models not just to affirm our understanding of the
system but to predict future behaviors of physiological
systems. For example, physiologists may set up experiments
in which the desired behavior (e.g. molting, jumping, yawning,
feeding, sleeping, etc.) is aperiodic or has low predictability
and then spend inordinate amounts of either investigator time
or hard disk space collecting extraneous data while awaiting
the occurrence of the actual behavior of interest. By assessing
the complexity of the behavior’s pattern of appearance, it may
become possible to predict with a reasonable degree of
accuracy both the sampling frequency and the time period in
which data collection is actually necessary to capture that
phenomenon (Fig.·2). 

The future for physiological complexity studies
Physiological complexity abounds. As physiologists, we

vaguely recognize it, vaguely respond to it and – at some level
– vaguely don’t care about it. Yet, as we have indicated in this
essay, a full appreciation of complexity has potentially huge
implications for a deeper understanding of regulatory systems

and the physiological processes they oversee. If we can
understand the impacts of complexity on our research, then we
can make better decisions about our choices of animal models,
design more efficient methodologies for data collection and
then interpret the resulting data in more meaningful ways.

Future interdisciplinary collaborations between
physiologists, mathematicians and physicists are vitally
important on several fronts. Discourse with other quantitative
scientists can stimulate physiologists to think about our
experimental design in more rigorous ways and also
interpret the data we produce with far greater insight. As
physiologists, we can also help expand the view of
mathematicians away from abstract descriptions of
complexity into more applied avenues ripe for exploitation in
the physiological sciences.

Collaborative efforts must recognize that semantics are
hugely important and that they present a large but
surmountable barrier to the interdisciplinary study of
complexity. Consider how the very words ‘complex’ and
‘complicated’ are taken to mean different things by
mathematicians, physicists and physiologists. It may sound
disparaging to a physiologist who has been working for
decades on an intricate system to hear the focus of their
attention described by a mathematician as ‘merely
complicated’, but appreciating these seemingly subtle and
technical semantic distinctions is important if we are to
communicate effectively and stay engaged with our
mathematical colleagues. (In fact, embarrassingly far into the
writing of this essay, the physiologist–mathematician author
team was still struggling to calibrate their respective use of
words that had both common English and technical
definitions!) Thus, however tedious the process, stripping away
jargon to reveal the common core ideas is of crucial importance
for real conceptual advances in complexity studies.

Finally, efforts by physiologists to incorporate elements of
complexity science into their research are highly likely to yield
tangible results in the near future. To illustrate this point with
an example used earlier, is water transport across biological
membranes a complicated yet predictable process now known
to involve a variety of mechanisms, including aquaporins and
water pumps, or does it remain a complex and thus
unpredictable mechanism with as yet undiscovered
components? If, as physiologists, we learn the characteristics
of complicated vs complex systems (e.g. greater predictability
of the former), then we may be able to concentrate our studies
on the interaction of a known, complete list of components of
a complicated system, rather than searching for additional
unknown components of a complex, unpredictable system.

If the reader of this essay had hoped for precise definitions
of complexity, and clear pathways to improved experimental
design, they have no doubt realized that they are not yet
forthcoming. A great deal of interdisciplinary collaboration
between physiologists and other quantitative scientists must
first be realized to understand physiological complexity – but
appreciating physiological complexity is an important first
step.
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