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Abstract   

Observable phenotypic traits of an animal are a result of the interaction between the genome and 

environment. Differences in phenotypic traits between individuals induced by the environment, an indicator 

of phenotypic plasticity, may have immediate and long-term consequences for individuals, populations and 

species. During development, animals are often most responsive or susceptible to changes in their 

environment, and phenotypic plasticity can be particularly prevalent. It is increasingly apparent that the way 

in which the environment influences an animal’s physiology may differ not just across a species’ lifetime, 

but also within a species’ ontogeny. Periods of development during which an animal may show greater 

likelihood of phenotypic changes are termed ‘critical windows’ or ‘sensitive periods’. Across animal taxa, 

experiments utilize exposures to particular environmental, chemical or pharmacological stressors at certain 

time points of development to detect and understand critical windows during development. This chapter 

examines the emergence of critical windows as an important physiological concept using examples from the 

literature that span model and non-model invertebrates and vertebrates exposed to a range of environmental 

conditions. This chapter also outlines considerations for the continued search for critical windows. Critical 

window experimental designs can range in complexity, and variables such as the timing of exposures, if a 

single or multiple doses of a stressor are used and when endpoints are assessed should be considered. A 

continued focus on critical windows will no doubt contribute to our growing knowledge of the interaction 

between the environment and physiology during animal development. 
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1. Introduction  
 

1.1 Definition and History of Developmental Critical Windows 
 

Phenotype is the result of the interaction between the genome and environment. Differences in phenotypic 

traits between individuals induced by the environment, an indicator of phenotypic plasticity, may have 

immediate and long-term consequences for individuals, populations and species. During development, 

animals are often most responsive or susceptible to changes in their environment, and phenotypic plasticity 

can be particularly prevalent. Recognizing and understanding both the potential positive and negative 

consequences of plasticity is at the core of developmental physiological research. Chronic exposure to 

certain environmental conditions throughout development is the classic approach to understanding how 

environment and physiology interact. However, it is apparent that the way in which the environment 

influences an animal’s physiology may differ not just across a species’ lifetime, but also within a species’ 

ontogeny. Periods of development during which an animal may show greater likelihood of phenotypic 

changes are termed developmental ‘critical windows’ or ‘sensitive periods’. 

The terms ‘sensitive period’ or ‘critical period’ first appeared in the medical literature in the 1940’s 

and 1950’s, and became prevalent in the 1970’s and beyond, particularly in relation to the required 

developmental processes that occur at certain times during human development (Vito et al. 1979; Colombo 

1982; Johnson and Newport 1989). The idea of sensitive periods has been discussed extensively in relation 

to sensory development, with critical windows defined as periods when developing neural circuits are 

particularly sensitive to stimuli and may need signals for normal development to occur (Rice and Barone Jr 

2000; Andersen 2003; Hensch 2004; Knudsen 2004; Uylings 2006). Similarly, sensitive periods in 

cardiovascular, endocrine, reproductive, respiratory and immune development are discussed in relation to 

the developmental trajectories of these systems (Barr Jr et al. 2000; Dietert et al. 2000; Pryor et al. 2000; 

Selevan et al. 2000; Andersen et al. 2006).  

Much of the earliest work on critical windows occurred in humans, or with a human focus, but 

critical windows have also become a fundamental concept of comparative physiology and animal 

toxicology. Across animal taxa, experiments that utilize exposure to particular environmental, chemical or 

pharmacological stressors at certain time points of development are used as a means to detect and 

understand critical windows during development. Detecting such periods is vital for understanding how the 

environment may influence the developmental phenotype both in the short-term (during embryonic or larval 

development) and long-term (mature life stages).  
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1.2  Critical Windows are Central to the Interaction Between Development, Physiology 

and Environment 
 

The environment may exert larger impacts on physiological systems at particular time points due to the 

developmental status of the animal. Exposure to a stressor that itself may play a key role in developmental 

processes can be used to uncover the developmental trajectory of an animal or system. Retinoic acid, for 

example, plays a key role in axis formation and limb patterning, and thus its application during certain 

stages of development can be used to infer the series of developmental events that constitute these important 

developmental processes. Embryos of the African clawed frog (Xenopus laevis) are most sensitive to 

retinoic acid in early gastrulation stages, with significant truncation of the body axis. This sensitivity is 

related to the disruption of the expression of cement-gland-specific genes that are normally expressed in late 

gastrula and early neurula stages (Sive et al. 1990). Thus, retinoic acid exposure illustrates that early in 

progression of the body axis patterning the process is somewhat plastic, and this may be important for 

subsequent development.  

Periods of developmental plasticity or susceptibility can be defined by piecing together the findings 

of numerous studies that cover multiple developmental stages. Again using the example of retinoic acid, 

separate studies in rodents have examined the production of morphological abnormalities following retinoic 

acid exposure at gastrulation (Vickers 1985; Sulik et al. 1995) and organogenesis (Kochhar et al. 1984). 

Assessment of exposures and doses of retinoic acid used in these studies, and the resultant effects, indicates 

that retinoic acid sensitivity decreases as development proceeds in rodents. In some instances, an individual 

researcher or research lab has pieced together changes in developmental responses to a stressor across 

various published works. An excellent example of this is in a series of papers from 1956 to 1971 that 

examined the hatchability of embryonic chickens (Gallus gallus) following exposure to hypoxia, hyperoxia 

and hypercapnia at particular development ages (Taylor et al. 1956; Taylor and Kreutziger 1965, 1966, 

1969; Taylor et al. 1971). After examining these different exposure studies, a number of conclusions on the 

stage-specific effects of various respiratory gas exposures on chicken embryo hatchability can be made. 

Embryos show a general trend for increased tolerance with later hypercapnic exposures, but no significant 

sensitive period for the effect of hypoxia on hatchability (hypoxia does exert stage-specific morphological 

and physiology effects on chicken embryos, discussed in more detail in section 2.1). Hatchability is also 

sensitive to hyperoxia exposure during days 5-8 and particularly during days 17-21. Thus, the eventual 

hatchability of embryos is influenced most by early hypercapnia and late hyperoxia exposure.  

With recognition of the importance of critical windows, a more systematic approach has emerged in 

which individual studies perform multiple exposures during particular, distinct periods of development to 
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assess variability in sensitivity across development. The timing of exposures is often determined based on 

significant developmental events, such as hatching, birth, metamorphosis and molting. Thus, many studies 

examine the sensitivity of an animal during the embryo versus larval period, for example (e.g. Fent and 

Meier 1994; Bridges 2000; Greulich and Pflugmacher 2003). Yet, within these periods differential 

susceptibility may also occur as an animal develops and their physiological status progresses so that the 

extent of their cellular differentiation, organogenesis and enzymatic activity influences how sensitive or 

responsive they may be to environmental stressors. For example, animals may show varied responses to 

environmental toxicants due to the stage of maturation of the immune system and the developmental status 

of immune cells and organs (Dietert et al. 2002). In light of this, developmental milestones within an 

individual physiological system are now being considered as a means for dividing up development into 

different windows of exposure (Dietert et al. 2000; Landreth 2002).  

The majority of critical window studies use a design in which a subset of animals are raised in 

control conditions, a subset of animals are chronically exposed to the stressor of interest, and a subset of 

animals are exposed to the stressor during distinct, separate windows (Fig. 1). These windows may be 

chosen based on developmental events (Aronzon et al. 2011; Eme et al. 2015; Mueller et al. 2015c), or they 

may be arbitrary divisions of development (Dzialowski et al. 2002; Chan and Burggren 2005; Oxendine et 

al. 2006; Hanlon and Parris 2014). In either case, this approach is a tried and trusted method for detecting 

periods of susceptibility or plasticity in the physiology, morphology and biochemistry of an animal.  

 This chapter examines how critical windows are detected using examples from the literature that 

span model and non-model invertebrates and vertebrates exposed to a range of environmental conditions. 

The examples reflect areas of research in which critical windows have received the most attention, as well 

as areas in which there is an opportunity to undertake a search for critical windows. Exposures to important 

naturally occurring environment variables, such as hypoxia and temperature, during distinct developmental 

periods has been undertaken across animal groups. The field of environmental toxicology also has a focus 

on understanding periods of susceptibility, particularly exposures to heavy metals, pesticides and endocrine 

disrupting chemicals in developing invertebrates and aquatic vertebrates. The concept of critical windows is 

central to appreciating the importance of the environment during development and this chapter outlines 

considerations for the continued search for developmental periods of sensitivity or plasticity that will ensure 

critical window research remains central to the field of developmental biology.   
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2.  Stage-specific Sensitivity to Naturally Occurring Environmental Stressors 
 

2.1  Respiratory Gases 
 

Hypoxia and hypercapnia are naturally occurring environmental stressors for many developing animals, 

both in aquatic and terrestrial environments. Experimental manipulation of oxygen and carbon dioxide 

levels can reveal ecological implications for animals (Petranka et al. 1982; Rombough 1988; Latham and 

Just 1989; Kam 1993; Mills and Barnhart 1999; Seymour et al. 2000; Mueller et al. 2011a), and are also 

very useful for assessing the physiology of the developing respiratory and cardiovascular systems (Tazawa 

1981; Tazawa et al. 1992; Dzialowski et al. 2002; Bavis 2005; Crossley and Altimiras 2005; Liu et al. 2006; 

Bavis and Mitchell 2008; Ferner and Mortola 2009; Eme et al. 2011a; Eme et al. 2011c; Bavis et al. 2013; 

Eme et al. 2013; Eme et al. 2014).  

 Hypoxia has been used to examine the development of respiratory control in rats during the first 

three weeks of postnatal development (Wong-Riley and Liu 2005; Liu et al. 2006; Liu et al. 2009; Liu and 

Wong-Riley 2010). The hypoxic ventilatory response following 5 min of exposure to hypoxia (10% 

oxygen) is blunted on day 12-16, and particularly on day 13. Measurement of respiratory variables, 

including minute ventilation, breathing frequency and tidal volume throughout prenatal development, 

indicate that respiratory control undergoes a considerable shift at this time, with respiratory frequency 

peaking on day 13 (Liu et al. 2006). Additionally at this time, body temperature abruptly increases, 

metabolic rate is heightened in normoxia but comparatively reduced in hypoxia (Liu et al. 2009), the brain 

stem respiratory nuclei demonstrate a transient dominance of inhibitory over excitatory neurotransmission 

(Wong-Riley and Liu 2005), and serotonin transmission decreases (Liu and Wong-Riley 2010). In light of 

these findings, day 12-16 most likely represents a critical window during which numerous physiological and 

neurochemical changes occur simultaneously, which may result in a reduction in respiratory modulation that 

causes animals to be less responsive to respiratory stressors. This period in rats is comparable to 2-4 months 

postnatal development in humans, a time represented by the highest incidence of sudden infant death 

syndrome (SIDS) (Hakeem et al. 2015). Thus, understanding the developmental changes that occur in 

rodents during this time may shed light on the physiological mechanisms that lead to SIDS.  

 Avian and reptile embryos are often used as substitutes for mammalian fetuses for understanding 

developmental physiology, particularly as they are separate from maternal influences. In ovo hypoxia 

exposure is easy to undertake and ecologically relevant in many instances. Many chronic exposure studies 

in bird and reptile embryos have demonstrated changes in morphological and physiological phenotype of 

embryos, particularly in response to hypoxia (Wangensteen et al. 1974; McCutcheon et al. 1982; Crossley II 
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et al. 2003; Crossley and Altimiras 2005; Copeland and Dzialowski 2009; Eme et al. 2011a; Eme et al. 

2011c; Eme et al. 2013; Eme et al. 2014). However, in recent years studies have examined if there are 

particular critical windows for hypoxia sensitivity (Dzialowski et al. 2002; Chan and Burggren 2005; Tate et 

al. 2015). The physiology of chicken embryos is generally more hypoxia sensitive as development 

progresses (Grabowski and Paar 1958), and hyperoxia during days 14-18 of the 21 day incubation period 

produces greater decreases in body mass, hematocrit and lung mass compared to embryos exposed during 

days 7-18 (Xu and Mortola 1989). Thus, later stage chicken embryos are more sensitive to both low and 

high environmental oxygen. This finding is not surprising considering the increase in metabolic activity as 

embryos approach hatching (Romanoff 1967).  

Hypoxia exposure during distinct windows of chicken development reveals some interesting time-

specific phenotypic changes. For example, embryos exposed to 15% oxygen during days 1-6 have reduced 

body mass and a lower oxygen consumption rate on day 12 compared to normoxic embryos, but body mass 

and metabolism recover by hatching. Likewise, embryos incubated in hypoxia during days 12-18 also have 

reduced mass, with only a lower dry mass persisting at hatch. Embryos exposed during days 6-12 also have 

reduced mass on day 12 and 18 but recover by hatching. However, these embryos show an altered 

respiratory phenotype that persists to hatching. They are initially able to cope well with hypoxia, but show 

an eventual decrease in oxygen consumption at hatching compared to normoxic embryos (Dzialowski et al. 

2002). Thus, the middle third of embryonic development of chickens appears to be a critical window for 

oxygen consumption, however, hypoxic-induced alterations in organ and size occur throughout embryonic 

development, and in some instances hatchlings display normal morphological sizes following return to 

normoxia. As the chorioallantoic membrane, the main gas exchange organ of these embryos, increases to 

cover a significantly larger portion of the inner eggshell during this time (Ackerman and Rahn 1981), it is 

likely to be impacted by hypoxia and may alter the metabolic phenotype of the embryos. While the middle 

third of development is important for oxygen consumption, the last third of incubation is a critical window 

during which hypoxia blunts ventilation of chicken embryos. This is thought to be due to hypoxia 

influencing the normal development of the carotid bodies that become functional during this time (Ferner 

and Mortola 2009).  

Different windows for hypoxia sensitivity for oxygen consumption and ventilation in chicken 

embryos indicate how different components of a system may show critical windows that correspond, 

overlap, or occur at separate times of development. Exposure to hypoxia (10% O2) between 50% and 70% 

of development in the common snapping turtle (Chelydra serpentina) enlarges heart size relative to body 

size. Yet, the critical window for baseline mean arterial pressure is broader, with mean arterial pressure 

decreasing when hypoxia exposure occurs from 20% to 70% of development (Tate et al. 2015). In this 
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instance, the sensitivity of the physiological function of a system is more extensive, and morphological 

effects of a stressor are confined to a smaller proportion of development. It is not known if the critical 

windows of these two components influence each other.  

 

2.2  Temperature  
 

Temperature has pervasive effects on all biological processes. Animals that develop in utero (mammals) or 

with parental care (many birds) are somewhat protected from variations in environmental temperature. For 

ectothermic animals, however, including invertebrates, fishes, amphibians and reptiles, temperature can 

drive survival, development times, growth, metabolism and sex. These temperature effects have been 

assessed by incubating developing animals in different constant temperatures and measuring physiological 

functions such as growth rate (Sweeney and Schnack 1977; Angilletta et al. 2004), development rate 

(McLaren and Cooley 1972; Herzig and Winkler 1986; Rombough 2003) and oxygen consumption rate 

(Kuramoto 1975; Feder 1985; Kamler et al. 1998; Gillooly et al. 2001; Mueller et al. 2011b).  

Periods of increased thermal sensitivity during fish development, when physiological variables are 

particularly plastic, is of increased interest. Atlantic salmon (Salmo salar) embryos raised to a larval feeding 

stage in water 4.6ºC above ambient, display higher maximum growth rates compared to control fish when 

both groups are raised after feeding at common temperatures (Finstad and Jonsson 2012). Zebrafish (Danio 

rerio) raised from hatching to adulthood at 27ºC, but incubated as embryos at 22ºC, 27ºC (control), or 32ºC, 

show increased thermal sensitivity to exercise performance at temperatures different than respective 

embryonic incubation temperatures. Furthermore, both high and low temperature incubation groups display 

better exercise performance than control fish at 16ºC (Scott and Johnston 2012). The effects of temperature 

changes during embryonic development are also of interest. Oxygen consumption, heart rate and survival of 

lake whitefish (Coregonus clupeaformis) embryos is reduced following a temperature shift at the end of 

gastrulation compared to embryos in constant temperatures. In comparison, when the temperature shift 

occurs at the end of organogenesis the embryos show no change in metabolism or heart rate (Eme et al. 

2015; Mueller et al. 2015c). Thus, lake whitefish embryos show greater plasticity in these variables with a 

temperature change during organogenesis than later in development before hatch.   

 

2.2.1  Temperature-dependent Sex Determination 

 

An excellent example of the how genome-environment interaction can determine the phenotype of an 

animal is environmental sex determination. Temperature during embryogenesis or larval development is the 
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prevailing environmental factor that is involved in environmental sex determination in ectothermic 

vertebrates, such as reptiles, amphibians and fishes (Hillman 1977; Conover 1984; Korpelainen 1990; 

Baroiller and D'cotta 2001; Sarre et al. 2004).  

 The period during development in which temperature-dependent sex determination occurs in turtles 

provides some of the first examples of critical windows studies in comparative physiology (e.g. Yntema 

1979; Bull and Vogt 1981; Pieau and Dorizzi 1981; Yntema and Mrosovsky 1982). The critical window for 

sex determination is assessed by shifting eggs between male and female producing temperatures during 

certain stages of development, and examining the resultant sex ratios. In the common snapping turtle, the 

male producing temperature is 26°C, while the female producing temperatures are 20 and 30°C (Yntema 

1976). Yntema (1979) demonstrated that developmental stages 14-19 (stages defined by cranial, neck and 

forelimb formation; (Yntema 1968)) are temperature sensitive for female determination at 30°C, whereas 

the window for female determination at 20°C is during stages 14-16. Thus, while the critical window at 

20°C covers less developmental time, the total chronological time for the critical window at 20°C (21 d) is 

greater than at 30°C (12 d) due to a relatively slower development rate at 20°C. Sensitive stages of male 

determination at 26°C in the common snapping turtle are influenced by incubation temperature prior and 

subsequent to the thermally sensitive windows (stages 14-19 or 14-16). When embryos are incubated at 

30°C prior to stage 14, stages 14-19 are the male-producing critical window for embryos shifted to 26ºC, 

whereas embryos incubated at 20°C prior to stage 14, stages 14-16 are the male-producing critical window 

for embryos shifted to 26ºC (Yntema 1979). The critical thermal window for sex determination occurs 

between stages 14-20 in the loggerhead sea turtle (Caretta caretta), stages 16-20 in the red-eared slider 

(Trachemys scripta elegans), and stages 16-22 in the map turtle (Graptemys ouachitensis), painted turtle 

(Chrysemys picta) and European pond turtle (Emys orbicularis) (Bull and Vogt 1981; Pieau and Dorizzi 

1981; Yntema and Mrosovsky 1982; Wibbels et al. 1991). These critical windows represent approximately 

15-20% of total incubation (Pieau and Dorizzi 1981), and occur approximately during the middle third of 

incubation prior to sexual differentiation of the gonads (Wibbels et al. 1991). The similarity in the sensitive 

stages across turtles indicates that the window for temperature-dependent sex determination is conserved 

across species in this clade. All extant crocodilians studied also show temperature dependent sex 

determination, and in the American alligator (Alligator mississippiensis), similar to the turtles discussed 

above, the critical window for temperature-dependent sex determination covers 20% of incubation, during 

weeks 2 and 3 of the 10 week incubation period (Ferguson and Joanen 1982). This period is earlier in 

incubation compared to the turtles, but alligators are laid at a more advanced embryonic stage and so the 

critical window is quite similar (Ferguson and Joanen 1982).    
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Interestingly, Pieau and Dorizzi (1981) found the length of exposure depends upon the stage within 

the critical period at which the temperature shift occurs. That is, if the temperature shift is late in the critical 

window, a longer exposure to that temperature is required. Additionally, different incubation temperatures, 

irrespective of if male- or female-producing (Wibbels et al. 1991), can have differing influence on sex 

differentiation, and this may influence the exact width of the critical window. There is some suggestion that 

critical windows for sexual differentiation are not so important and instead temperature drives the 

expression of a certain genes that will produce variable ratios of one sex over another (Deeming et al. 1988). 

However, recent work has found that certain genes that may be involved in sex differentiation have 

temperature-dependent expression and this alteration in regulation often occurs during the critical window 

for sex determination (Kettlewell et al. 2000; Murdock and Wibbels 2002).  

Fish also show temperature-dependent sex determination. The mangrove killifish (Rivulus 

marmoratus) is the only self-fertilizing hermaphrodite vertebrate, and hermaphrodites are the predominant 

form in nature (Turner et al. 1992). However, while hermaphrodites are produced at temperatures of 25°C 

or above, exposures to 20°C or under during a small window prior to hatching will produce males 

(Harrington 1968). As males are scarce in nature, however, it seems unlikely that killifish are often exposed 

to temperatures below 20°C during this critical window for male production. In Atlantic silverside (Menidia 

menidia), temperature-dependent sex determination is correlated with body size, and, as found for the 

common snapping turtle, the timing and length of the critical window is dependent on temperature (Conover 

and Fleisher 1986). The sex ratio of Atlantic silverside larvae shifted between 15°C and 21°C is 

intermediate between constant 15°C (1:1 male:female) and constant 21°C incubation (9:1 male:female) 

when they are shifted at lengths of 8-21 mm. At 21°C the window for sex determination is shorter both in 

terms of total development time but also in relation to the developmental stage of the larvae (Conover and 

Fleisher 1986). Thus, the sex ratio of silverside is determined by a combination of the overall incubation 

temperature and if larvae experience a temperature change during the critical window. 

 

2.3  Salinity 
 

Salinity is increasing in many freshwater systems as a result of clearance of native vegetation, agricultural 

irrigation and rising groundwater (Williams 2001), and this has lead to a focus on salinity tolerance for a 

range of freshwater aquatic organisms (Kefford et al. 2003; Karraker et al. 2010). However, whether these 

organisms are particularly sensitive to increased salinity at particular developmental time points is still 

largely unstudied. A study examining the effect of salinity during certain windows of exposure on survival, 

growth and development of the salt-adapted brine shrimp (Artemia franciscana) is an example of a search 
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for a critical window for salinity tolerance. Brine shrimp survival is highest following exposure to low 

salinity (10 and 20 ppt) compared to high salinity (40 and 50 ppt) early in development, but this difference 

disappears when animals are exposed later in development (Burggren and Mueller 2015). Similarly, 

differences in growth and maturation between salinities are greatest following exposure during days 1-6 of 

the 15 day development period (Mueller, Willis and Burggren, personal communication). Thus, the earliest 

brine shrimp instar stages are most sensitive to changes in salinity, but if this is related to an immature 

osmoregulatory ability is unknown.  

Just as hypoxia tolerance is related to metabolic demands, salinity tolerance is related to 

osmoregulatory ability. Thus, if freshwater or marine developing animals are particularly sensitive to 

salinity changes during certain critical windows, it is likely that the sensitivity is due to the absence of, or 

undeveloped, osmoregulatory ability. Studies that relate tolerance to environmental stressors to 

physiological function provide an opportunity to understand the mechanism behind periods of sensitivity. 

Tolerance of low salinity in American lobster (Homarus americanus) and Japanese tiger shrimp (Penaeus 

japonicus) decreases during larval development, is lowest at metamorphosis and increases during post-

larval development (Charmantier et al. 1988). It is possible that the late larval stages, and the process of 

metamorphosis, are most sensitive to salinity changes. Charmantier et al. (1988) correlated high salinity 

sensitivity to low osmoregulatory ability, particularly during metamorphosis, when both species shift from 

osmoconformers to adult type osmoregulators. Thus, the shift in osmoregulatory ability defines the critical 

window for salinity tolerance in these species.    

 

2.4  Pathogens 
 

The sensitivity of an animal to pathogens is related to its resistance (ability to resist infection 

following exposure) and tolerance (ability to survive damage following infection). Resistance and tolerance 

may change throughout development resulting in critical windows of high pathogen susceptibility. For 

example, rainbow trout (Oncorhynchus mykiss) fry challenged with the myxozoan parasite Myxobolus 

cerebralis exhibit at least a 95% infection rate following exposure at 1, 3, 5, 7 or 9 weeks post hatch. In 

comparison, the prevalence of infection in Chinook salmon (O. tshawytscha) decreases from 100% and 90% 

in 1 and 3 week old fry, respectively, to just 1.7% in 9 week old fry (Sollid et al. 2003). Despite differences 

in infection rates across fry development between the two species, the disease states, such as whirling 

behavior and blacktail, exhibited by both species decreases as fry development proceeds (Sollid et al. 2003). 

Thus, early fry stages have both low resistance and tolerance to disease, the tolerance of rainbow trout 

increases during development, and both resistance and tolerance increases in Chinook salmon.   
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Disease is a common cited causes of world-wide amphibian declines (Stuart et al. 2004). Thus, 

assessment of critical windows of disease susceptibility will contribute to understanding the effect of 

disease on amphibian populations, particularly as frog tadpoles demonstrate stage-specificity sensitivity to 

pathogens. Mortality and abnormalities in the Pacific chorus frog (Pseudacris regilla) following infection 

with the nematode parasite (Ribeiroia ondatrae) is greatest in pre-limb (stages 23-24 (Gosner 1960)) and 

early limb (Gosner stages 26-30) tadpoles, and this sensitivity steadily decreases until metamorphosis 

(Johnson et al. 2011). Similarly, mortality of northern leopard frog (Lithobates pipiens) tadpoles exposed to 

the same parasite is also highest following exposure during pre-limb stages (Gosner stage 24-25), and 

abnormalities are highest following exposure during limb-bud stages (Gosner stage 27-28) (Schotthoefer et 

al. 2003). Additionally, the type of abnormalities displayed by the Pacific chorus frog is stage-specific. 

When infection occurs prior to limb development, the predominant abnormality is missing limbs while later 

exposure results in extra limbs or abnormal limb projections (Johnson et al. 2011). The abnormalities from 

such stage-specific exposures can be related to abnormalities seen in the wild, which may have implications 

for conservation efforts.  

 

 

3.  Critical Windows for Exposure to Environmental Contaminants 
 

3.1  Ethanol 
 

While not an environmental contaminant in the traditional sense, the effect of ethanol on mammalian 

development is of interest when examining the consequences of alcohol consumption during human 

pregnancy. Fetal alcohol syndrome (FAS) in mammals includes growth deficiency, cognitive impairment 

and craniofacial abnormalities following alcohol consumption by the mother (Mattson and Riley 1998). 

Whether FAS is stage-specific has been examined in rats and primates. Short, early exposures produce 

neurobehavioural and morphological abnormalities in rhesus monkeys (Macaca mulatta) and the southern 

pig-tail macaque (Macaca nemestrina), indicating early embryogenesis may represent a critical window for 

FAS (Clarren et al. 1992; Schneider et al. 2001). In contrast, hyperactivity of rats is highest following 

ethanol exposure during the later half of gestation (Tran et al. 2000), but learning does not appear to be 

affected by ethanol exposure at various timepoints throughout development (Cronise et al. 2001). Thus, 

specific critical windows for certain neural and morphological effects of FAS may be species-specific in 

mammals.  
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The search for critical windows of exposure for mammalian-relevant stressors, such as ethanol, are 

often undertaken in lower vertebrates in which exposure occurs in ovo. For example, zebrafish mortality is 

highest after ethanol exposure during gastrulation, while morphological malformations and a reduction in 

larval swimming performance are most severe after ethanol exposure during subsequent embryonic 

organogenesis (Ali et al. 2011). Likewise, different endpoints in Japanese medaka (Oryzias latipes) embryos 

display different potential critical windows for ethanol exposure. Embryos exposed to ethanol in the first 

and last third of development (0-3 and 6-9 dpf – ‘days post fertilization’) have the highest incidence of 

reduced head width and body length. However, the incidence of apoptosis decreases with early exposure 

and increases with late exposure, suggesting 6-9 dpf may be when medaka are most sensitive to ethanol 

(Oxendine et al. 2006).  

 

3.2  Heavy Metals 
 

The lethal and sub lethal effects of heavy metals in the environment have been studied across a range of 

animal groups (Pérez-Coll and Herkovits 1990; Mariño-Balsa et al. 2000; Bunn et al. 2001; Lee et al. 2001). 

Exposure of heavy metals during development of aquatic invertebrates in particular has implications not 

only for the invertebrates themselves but for higher trophic levels (Lavolpe et al. 2004). Metals such as 

mercury, copper, zinc and lead are toxic during development and alter developmental variables such as 

survival, growth, morphological development, swimming, feeding behavior and osmoregulation 

(DeCoursey and Vernberg 1972; Wong et al. 1993; Bambang et al. 1995; Itow et al. 1998; Lavolpe et al. 

2004). Lead is most toxic during the first half of embryonic development of the estuarine crab 

(Chasmagnathus granulatus). However, exposure to copper and zinc during the second half of embryonic 

development of C. granulatus produces a higher incidence of eye abnormalities and chromophore 

hypopigmentation (Lavolpe et al. 2004). Likewise, exposure of embryos of the grass shrimp (Palaemonetes 

pugio) to copper late in embryonic development increases mortality and eye abnormalities compared to 

exposure during early embryo stages (López Greco et al. 2002). The increased sensitivity to copper and zinc 

in later embryonic development is thought to be related to the increased permeability of the egg envelope as 

the embryo approaches hatching (Glas et al. 1997; López Greco et al. 2002; Lavolpe et al. 2004). However, 

exposure during post hatching stages has not been undertaken in these species to assess if removal of the 

egg envelope increases sensitivity. Zinc exposure during gastrulation stages of the embryonic development 

of American horseshoe crabs (Limulus polyphemus) produces the highest percentage of malformations 

(17%), including double embryos and segment-defective embryos, with the lowest incidence of 

malformations (1-2%) occurring prior to hatch (Itow et al. 1998). Likewise, embryonic American horseshoe 



 13 

crabs are also highly sensitive to an organotin compound, a tin-containing substance used in biocides and 

antifouling paints, with the incidence of abnormalities decreasing from 6-11% to 3% at the end of 

gastrulation. A second peak in abnormalities also occurred prior to first embryo molt before decreasing 

again prior to hatch (Itow et al. 1998). Japanese horseshoe crabs (Tachypleus tridentatus) also show the 

same two peaks in sensitivity to organotin compounds as their American counterparts (Itow et al. 1998). 

Thus, early embryonic development until gastrulation and the period around the first embryo molt are likely 

critical windows for toxicant sensitivity in this group of crabs. Metal toxicity also varies during marine 

invertebrate larval development. Larva of the common prawn (Palaemon serratus) and fiddler crab (Uca 

pugilator) are increasingly sensitive to mercury exposure (DeCoursey and Vernberg 1972; Mariño-Balsa et 

al. 2000), whereas copper toxicity decreases during larval development of the Japanese tiger shrimp 

(Bambang et al. 1995).   

With the increasing occurrence of deformed individuals in the environment, developmental stages of 

amphibians are also used extensively to assess developmental toxicity of a number of aquatic contaminants 

(Degitz et al. 2000). These studies highlight that amphibians often exhibit stage-specific sensitivity to a 

range of toxicants. Embryos of the South American toad (Rhinella arenarum) have a reduced body size, 

curved bodies and tail, fin and gill deformities following lead exposure at any stage of embryogenesis. 

However, exposure in the middle of embryonic development during neuromuscular activity results in a 

significant decrease in survival and higher incidence of malformations than at other stages of exposure 

(Pérez-Coll and Herkovits 1990). Similarly, western-clawed frogs (Xenopus tropicalis) are most sensitive to 

organotin compounds in the middle stages of embryonic development. During this time, normal fin 

formation is disrupted and other abnormalities include an enlarged proctodaeum and pigment loss in 

melanophores (Yuan et al. 2011).      

 Both bird and mammal embryos show increased immunotoxicity in response to lead following 

exposure during particular periods in ovo or in utero. Rat offspring have higher levels of lead in their blood 

and bone after the mother is given water containing lead during gestational days 15-21 compared to days 3-

6 (Bunn et al. 2001). Despite no differences in consumption, mothers have higher blood lead levels when 

exposed late in their pregnancy, which, together with a potential higher transfer between mother and fetus, 

leads to greater suppression of the cellular immune response in offspring following late gestation exposure. 

In chicken embryos exposed to sub lethal lead levels, stage-specific immunotoxic effects occur (Lee et al. 

2001). Lead exposure on day 5, 7 and 9 of incubation affects primarily macrophages, while exposure on day 

12 results in a loss of T-cell immune function. This pattern may be due to lead interrupting the migration of 

T-cells from the bone marrow to the thymus, a process that only occurs from day 12 (Lee et al. 2001).     
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3.3  Endocrine Disrupting Chemicals 
 

Both natural and man-made chemicals that mimic hormones can disrupt normal development and 

reproduction in a range of animals (Tyler et al. 1998). This has been of particular focus in organisms that 

are often used as indicators of environmental health and in toxicological assays, such as aquatic 

invertebrates, amphibians and fish. Water fleas (Daphnia magna) are parthenogenetic and females will 

produce either all female broods during times of abundant resources, or male broods when resources 

become limited. Male offspring will sexually reproduce with females to produce eggs that can enter 

diapause until conditions improve. The switch from producing female to male broods is responsive to 

multiple environmental cues (Stross and Hill 1965; Carvalho and Hughes 1983) but is also under endocrine 

control by the natural crustacean hormone, methyl farnesoate (Olmstead and Leblanc 2002). Chronic 

exposure to methyl farnesoate causes male brood production, but exposure must occur during ovarian egg 

maturation, and the 60-72 h period of ovarian egg development in particular produces the most male broods 

(Olmstead and Leblanc 2002).  

 Endocrine disruption during development can also affect single sex dimorphisms, and help reveal 

how such dimorphisms are regulated. Two critical windows have been detected for the development of male 

dimorphism in dung beetles (Onthophagus taurus). Dung beetles exhibit male horn length dimorphism, in 

which larvae that experience favorable conditions grow large and produce horns while larvae in poor 

conditions do not (Hunt and Simmons 1997). Exposure to a juvenile hormone analog, methoprene, late in 

the third instar stage, once larvae have ceased feeding prior to metamorphosis, can switch the trajectory of 

male development. That is, exposure to methoprene during this window can lead to small males producing 

horns (Emlen and Nijhout 1999). Furthermore, exposure to methoprene earlier in development, during the 

late feeding stage, increases the body size threshold at which horns are developed so that fewer males 

develop horns (Emlen and Nijhout 2001). Exposure to methoprene during these two periods suggests the 

first period is the window during which the fate of the males, whether horned or hornless, is determined, 

while the second period represents the time during which horn growth is regulated so that it matches body 

size (Emlen and Nijhout 2001).  

Fish in particular are often used to infer toxic effects in higher animals groups, as the molecular 

processes involved in responses to toxic substances are highly conserved across vertebrates (Ankley and 

Johnson 2004). The effects of endocrine-disrupting chemicals on fish development are of particular interest 

from both a toxicological perspective, especially considering the plasticity in fish gonadal development (van 

Aerle et al. 2002). The effects of hormones on developing stages is also useful for sexual reversal 

techniques used to optimize commercial production of farmed species (Hunter and Donaldson 1983; 
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Chiasson et al. 2008). Exposure to estrogens and androgens during early larval development of zebrafish, 

medaka, fathead minnow (Pimephales promelas), Mozambique tilapia (Tilapia mossambica), and Egyptian 

mouthbrooder (Hemihaplochromis multicolor) influences sexual differentiation and gonadal development 

during a period in which the reproductive system is particularly plastic (Nakamura and Takahashi 1973; 

Hackmann and Reinboth 1974; Koger et al. 2000; van Aerle et al. 2002; Ankley and Johnson 2004; Maack 

and Segner 2004). When exactly the critical window for endocrine disruption or sex differentiation occurs is 

species-specific. Fathead minnow are most sensitive to ethinylestradiol exposure during day 10-15 of their 

100 day post hatch development (van Aerle et al. 2002). Likewise, zebrafish are most sensitive to 

ethinylestradiol during 43-71 dpf of the 190 dpf development, a time during which the hermaphrodite gonad 

differentiates into testes or ovary (Maack and Segner 2004). Another study found zebrafish are most 

sensitive to ethinylestradiol during a similar window from approximately 22-62 dpf (Andersen et al. 2003). 

In some instances, such as in the common carp (Cyprinus carpio), the period prior to sexual differentiation 

is also a sensitive period for endocrine disruption (Gimeno et al. 1997). In comparison, sexual 

differentiation in marine species occurs after metamorphosis during juvenile development (Hendry et al. 

2002; Chiasson et al. 2008). Thus, these fish are likely to display a later critical window for hormone 

sensitivity.  

Amphibians exhibit heightened sensitivity to endocrine disruptors during metamorphosis, a period 

that is characteristic of large changes in the synthesis and action of endogenous hormones, such as thyroid 

hormone (Kikuyama et al. 1993; Hayes 1997). The northern leopard frog is developmentally delayed 

following ethinylestradiol exposure during the middle of metamorphosis (Gosner stages 30-36 (Gosner 

1960)), and this delayed development persists until metamorphic climax (Hogan et al. 2008). This 

sensitivity corresponds to the onset of thyroid gland function and a rise in thyroid hormone levels, thus 

estrogens may modulate thyroid action during this metamorphic critical window. In comparison, 

ethinylestradiol exposure during the early period of metamorphosis (stages 27-30) produces a female-biased 

sex ratio compared to unexposed tadpoles, and this is related to the period of gonadal differentiation (Hogan 

et al. 2008). Thus, ethinylestradiol can induce different windows of sensitivity for different physiological 

parameters, and this is dependent upon the trajectory of certain developmental processes. Examining critical 

windows for endocrine disruption during fish and amphibian development allows straightforward 

toxicological assays to be completed in a relatively short time frame. Such research can provide a basis for 

quantifying the physiological and ecological impacts of endocrine disrupters (Ankley and Johnson 2004).  
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3.4  Sensitivity of Embryo Versus Larval Stages 
 

In light of the many environmental stressors, animal models, physiological systems and stages of 

development assessed across critical windows studies, it is difficult to make a broad statement about when 

during development animals are most sensitive to environmental stressors. However, critical windows have 

been frequently demonstrated across vertebrate and invertebrate taxa, suggesting that more complex 

experimental designs (Figs. 2-4) may better represent the effects of environmental stressors on physiological 

phenotypic plasticity, compared to classic experimental designs (Fig. 1). It can be argued that later 

developmental stages will show increased tolerance to stressors due to advancement of their physiological 

systems. Embryos, as the earliest developmental stage, may be considered the most sensitive to stress. For 

those species that develop in ovo, the egg itself may provide some protective benefits, resulting in embryos 

being more tolerant than post hatch stages (Van Leeuwen et al. 1985; Green et al. 1986; Fent and Meier 

1994).   

The egg chorion of invertebrates, fish and amphibians, also known as the capsule or envelope, is 

thought to serve as a potential barrier against environmental contaminants. For example, the chorion of fish 

eggs can absorb up to 98% of cadium and 70% of zinc due to binding between the metals and proteins in the 

chorion containing sulfhydryl groups (Wedemeyer 1968; Blaxter 1969; Beattie and Pascoe 1978). The egg 

capsule of amphibians can also provide a protective barrier against pesticides. While early tadpole stages 

represent a critical window for parasite infection in the Pacific chorus frog, the embryos are unaffected by 

exposure, indicating the function of the egg capsule to prevent parasite infection (Johnson et al. 2011).  

The protective nature of the egg, if present, may change during development. The insecticide 

cypermethrin is most lethal to medaka embryos late in embryonic development (stage 34 of 39 (Iwamatsu 

2004)), however, a high incidence of edema occurs earlier in embryonic development (González-Doncel et 

al. 2004). As evident by the morphological abnormalities, cypermethrin must be able to enter medaka eggs 

at all stages of embryogenesis, but the higher lethality later in development suggests that changes in the egg 

chorion structure, a natural process of hatching, may decrease the protective nature of the chorion. In fact, 

when medaka embryos are exposed to the herbicide thiobencarb with and without the chorion intact, the 

LC50 (lethal concentration, where 50% of the population is killed by the contaminant) of dechorionated 

embryos is 2.0 mg/l of thiobencarb compared to 3.9 mg/l in chlorinated embryos, illustrating the protective 

nature of the egg structure 

The chorion may also be directly affected by a toxicant. For example, the egg chorion of medaka 

develops fractures and holes following exposure to silver nanoparticles (Wu and Zhou 2012). The loss of 

chorion integrity compromises osmotic balance within the egg, resulting in edema and morphological 
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abnormalities of medaka embryos following silver nanoparticle exposure (Wu and Zhou 2012). In this 

instance the egg chorion may actually facilitate the toxicity of the nanoparticles (Villalobos et al. 2000). 

 

 

4.  Considerations for Critical Window Experimental Approaches 
 

As our knowledge of developmental phenotypic plasticity and critical windows grows, how we approach 

their study must also evolve. Experiments can range from those that expose a developing animal to a single 

stressor dose during a few windows of development (Fig. 1) to those that utilize multiple exposure windows 

and stressor doses to examine the extent of phenotypic change (Figs 3-4). The latter designs increase in 

complexity, which can result in large treatment and animal numbers that are not always possible or 

manageable. Species that are relatively easy to obtain, house and care for in large numbers lend themselves 

to complex critical window studies. Irrespective of the animal model, there are a number of factors to 

consider when designing an experiment aimed at detecting critical windows, and they will be discussed 

below.  

 

4.1  Length of Exposure and Overlapping Exposures 
 

Often, the length of the exposure to an environmental stressor can impact the phenotypic changes induced in 

the developing animal. Furthermore, the length of exposure may vary considerably across species. For 

example, common prawn and spider crab (Maja squinado) larval mortality is limited following 24 h 

exposure to mercury, copper or cadmium, but increases following 72 h exposure. In comparison, mortality 

caused by heavy metal exposure in the larvae of lobster (Homarus gammarus) is evident after just 24 h 

(Mariño-Balsa et al. 2000). The way in which exposure times affect species is dependent upon how the 

length of exposure is related to overall development time. That is, the same exposure time in two species 

with different developmental trajectories will more than likely result in different effects in each. Within a 

species, an increase in an effect with a longer exposure time may indicate the accumulative effect of the 

stressor. However, it may also indicate that the longer exposure time covers more of a critical window of 

sensitivity during development. For Japanese tiger shrimp nauplii, the ammonia concentration that produces 

50% mortality is much lower in late nauplii after 48 h of exposure compared to early nauplii after 24 h 

exposure (Lin et al. 1993). This is because post-molt late nauplii no longer relying on endogenous reserves 

and are feeding, increasing their sensitivity to the environment. Even in the more ammonia-tolerant zoea 

and mysis developmental stages, ammonia-induced mortality increases with exposure time due to increased 



 18 

sensitivity during molting (Lin et al. 1993).  

Whether the researcher is purposely investigating the presence of a critical window or not, the fact 

that experimental animals are constantly developing must be taken into account when designing exposure 

times. This is particularly relevant if comparing across species, as the exposure times must be relative to 

their developmental trajectories. Figure 2 demonstrates an experimental design in which exposures occur 

during well-defined periods of fish embryogenesis. This design is perhaps an improvement on experiments 

that use arbitrary exposures that divide development into even exposure windows (Fig. 1). In this instance, 

phenotypic changes that may occur during exposures can be more easily related to what is happening 

developmentally.   

Furthermore, Figure 2 shows a design that incorporates overlapping exposures, which can be useful 

for defining the boundaries of a detected critical window. For example, using exposures 2, 4, 6 and 8 only in 

Figure 2, if a phenotypic change occurs following exposure 6 then the critical window may be defined as 

occurring during circulation and fin development. However, in an instance when all overlapping exposures 

in Figure 2 are used, a phenotypic change may be greatest following exposures 5 and 6, but not 7. This 

suggests that exposure must occur during the first half of circulation and fin development (as in exposure 5 

and 6), and this period is the true critical window. A limited number of studies have employed the approach 

of overlapping exposure windows (Olmstead and Leblanc 2002; Hogan et al. 2008; Tate et al. 2015) and 

they demonstrate the usefulness of overlapping exposures. An example analogous to that described in 

Figure 2 is an evident in an experiment using juvenile hormone exposure to find the critical window for sex 

determination in Daphnia (Olmstead and Leblanc 2002). Exposure to juvenile hormone during 36-60 h and 

72-96 h of development produces a low percentage (<40%) of males, while exposure during 48-72 h and 

60-84 h produces a high percentage (>80%) of males. Therefore, the critical window for producing male 

broods is defined as 60-72 h, as this is the common period shared by the two exposure windows that 

produce the highest percentage of males. In comparison, if exposures had only occurred during separate, 

non-overlapping 24 h exposures (0-24, 24-48, 48-72 and 72-96 h), the window would be defined as wider 

(48-72 h) than actually exists.   

 

4.2  Stressor Doses 
 

The dose or level of a stressor used is a vital consideration in critical window designs. In chronic studies, a 

very high dose of an environmental toxicant that causes mortality is useful for defining lethality only. A 

slightly lower dose, however, may provide more information about the morphological, physiological and 

biochemical effects of a toxicant, particularly if the dose is environmentally relevant. In critical window 
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studies, a dose that produces mortality following exposure during certain periods can be used to define a 

critical window for mortality. However, doses that are sub-lethal at all stages of development may provide 

more useful information about phenotypic traits that are affected by the stressor and if phenotypic changes 

are more prevalent during certain critical windows.   

 Another aspect of critical window experiments that requires attention is if a single dose or level of a 

stressor is used, or if multiple doses are used (as depicted in Figure 3). Of the critical window studies cited 

in this chapter, less than 40% use more than a single dose or level of a stressor. Many studies undertake 

preliminary tests to determine the best dose to use before undertaking exposures during multiple windows 

(e.g. López Greco et al. 2002; Ali et al. 2011) or select a single environmentally relevant dose (e.g. Clarren 

et al. 1992; Boone et al. 2013). However, this approach may limit the information that can be obtained from 

the study and may mask the subtleties of stressor-induced effects. This is particularly relevant when 

attempting to define the extent of a critical window. For example, a higher dose may induce a phenotypic 

change slightly earlier in development and it may persist slightly longer as the critical period closes. Thus, 

the critical window defined from the higher dose will be wider than the same window defined from a lower 

dose (Mueller et al. 2015a).    

 Experimental designs that employ multiple exposure windows and stressor doses are useful for 

defining the extent of the critical window. However, by examining the phenotypic modification induced by 

all possible combinations of exposure time and dose allows critical windows to be considered using a three-

dimensional construct (Fig. 4a; (Burggren and Mueller 2015). In this construct, in which the phenotypic 

change at each time point is dependent upon the dose, the effect of a stressor may be examined in significant 

detail. Studies employing multiple exposure windows and stressor doses that have presented data in a three-

dimensional manner include examination of salinity tolerance in developing brine shrimp (Fig. 4b; 

Burggren and Mueller 2015) and pesticide sensitivity in the southern leopard frog (Bridges 2000). This 

approach may be particularly useful for assessing how a phenotypic trait is modified by different stressor 

doses within the critical window once the potential window has been detected using a more simple exposure 

design (such as depicted in Fig. 1). Visualizing the interaction between exposure time, dose and magnitude 

of phenotypic modification may also help to pinpoint the mechanism of stressor action.  

    

4.3  Systems Approach to Critical Windows 
 

Critical window studies often focus on changes or abnormalities in morphological characteristics, as they 

are often the easiest to observe and measure. Studies examining sex determination and endocrine disruption, 

for example, tend to examine the morphology of the developing gonads. Yet, the critical window for 
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endocrine disruption may be influenced by other physiological aspects, such as the onset of hormonal 

regulation due to the presence of endogenous hormones and receptors. For instance, the critical window for 

endocrine disruption in coho salmon (Oncorhynchus kisutch) is just after hatching (Piferrer and Donaldson 

1989), and this occurs in concert with a peak in endogenous testosterone (Feist et al. 1990).  

The absence of traditional indicators of phenotypic modification during critical window exposure to 

a stressor is not always indicative of a non-effect. For example, three day exposure to carbaryl, a broad-

spectrum insecticide, late in tadpole development of the green frog (Lithobates clamitans) does not alter 

survival or time to and size metamorphosis, but alters mRNA levels of thyroid regulated genes in the brain 

four months later, following metamorphosis (Boone et al. 2013). Thus, assessing one or two aspects of a 

system, in this instance growth and development rate, may mask other potential stressor effects, such as 

transcriptome changes. Taking a system approach to studying critical windows, and understanding that 

different aspects of a system, be it morphological, physiological or biochemical, may have different periods 

of sensitivity is key to understanding the overall system effect of an environmental stressor.     

 

4.4  Combined Stressors 
 

Understanding the impacts of natural and anthropogenic environmental stressors on animals has moved 

from the study of individual stressors alone to combined effects, as this is more representative of what 

animals are likely to experience in their natural environment. The consequences of combined stressors are 

also worth consideration in the context of critical windows as the combination of stressors may influence 

the timing of susceptibility during development. The concept of combined stressors is particularly relevant 

in the context of environmental contamination in a situation in which a species is already under some 

natural environmental stress. Combined stressors may have an additive or synergistic effect (e.g. Relyea and 

Mills 2001; Jones et al. 2011), or one stressor may lessen the effect of the other. An example of the latter 

situation is pesticide exposure in frog tadpoles naturally exposed to pathogens. The effect of fungal 

infection on tadpoles, including reduced survival and growth, is mitigated by the broad-spectrum herbicide 

glyphosate in the gray treefrog (Hyla versicolor) and by the fungicide thiophanate-methyl in the southern 

leopard frog (Lithobates sphenocephalus) (Hanlon et al. 2012; Hanlon and Parris 2014). Hanlon and Parris 

(2014) exposed gray treefrog tadpoles to glyphosate and the fungus during early, mid or late tadpole 

development but not find a stage-specific interaction between the two stressors. However, this study is an 

example of how the concept of critical windows can be incorporated when examining the potential effects 

of combined stressors in the environment.  
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4.5  Timing of Endpoint Measurement 
 

The search for critical windows is often concerned with the immediate, or developmental, impacts on the 

animal. However, the long-term consequences of an environmental change or stressor exposure during a 

certain period of development are also of importance. Phenotypic changes induced during critical window 

exposure may persist into mature life stages, influencing the adult phenotype. In some instances, immediate 

developmental effects may not be evident, but may materialize at a later stage, such as the transcriptome 

changes that appear months after insecticide exposure in green frog tadpoles discussed in section 4.3. Often 

the appearance of an effect is specific to the endpoint. For example, transient morphological abnormalities, 

such as edema, occur in medaka embryos exposed to the insecticide cypermethrin early in embryonic 

development, with embryos recovering prior to hatch. However, following late embryonic exposures, 

mortality is high and longer term effects, such as spinal curvature, an inability to inflate the swim bladder 

and behavioral changes, manifest in the surviving larvae (González-Doncel et al. 2004).  

While some effects may not appear until later in life, developmental effects may also disappear later 

in life, often evident of self-repair in the animal (Burggren and Reyna 2011). Morphological changes, such 

as decreased body mass, shorter toes and beaks, following hypoxia exposure during the windows of day 1-6, 

6-12 or 12-18 of chicken embryo development are present on day 12 and 18, but almost all changes 

disappear by hatching (Dzialowski et al. 2002; Chan and Burggren 2005). Thus, given time back in 

normoxia, chicken embryos show a remarkable ability to recover to the normal morphological phenotype. 

Likewise, zebrafish exposed to estrogens during the period for sex differentiation show an initial skew in 

the sex ratio and kidney pathology, but after recovery in clean water until the adult stage the sex ratio, 

gonad morphology and kidney histology return to normal (Hill Jr and Janz 2003; Weber et al. 2003). 

However, the exposure may still have long-term ecological implications as viable egg production and 

hatchability is reduced. In comparison, exposure to estrogen alters sex ratios and increases the incidence of 

intersex in the northern leopard frog 2-3 months after tadpole exposure (Hogan et al. 2008). Thus, the ability 

to recover from endocrine disruption during critical windows of reproductive development is variable 

among fish and amphibian species and may be related to their mode of sex differentiation (Hogan et al. 

2008).  

The endpoints chosen in a critical window study will depend on the particular biological question of 

interest. If examining developmental toxicity of an environmental contaminant, then endpoints measured 

shortly after exposure during development should be the focus. However, if potential long-term 

consequences are of interest, then endpoints measured at the end of development or in an adult stage will be 

most useful. In many cases, multiple endpoints across time will provide the best picture of phenotypic 
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changes induced by an environmental stressor. Endpoints measured at different life stages can also shed 

light on the mechanism of self-repair and if such a process occurs following exposure during certain distinct 

windows of exposure. Beyond endpoints measured during the life history of a single individual, the 

potential transgenerational effect of exposure to a stressor during a critical window of development may 

also be of interest. Transgenerational transfer and epigenetic effects are of increasing focus in 

developmental physiology (Ho and Burggren 2010; Burggren 2014; Burggren and Crews 2014; Mueller et 

al. 2015a). The interplay between critical windows, the resultant phenotype of an individual at all life 

stages, and potential transgenerational effects should be of focus due to their ability to link the 

developmental environment to physiological traits at all life stages and across generations. 

 

 

5. Conclusions 
 

The concept of critical windows has become ubiquitous in the medical, comparative physiology and 

environmental toxicology fields, as it recognizes that the environment may influence the biology of an 

animal differently during ontogeny. The study of critical windows has the ability to inform us about normal 

developmental progression of different physiological systems while also demonstrating how animals may 

respond via phenotypic modification in response to environmental stressors. For example, exposure to 

hypoxia during distinct periods of development can inform us about the ontogeny of the cardiovascular and 

respiratory systems, while exposure to different salinities during specific time points can inform us about 

osmoregulation. At the same time, exposure to these environmental variables during specific windows of 

development can indicate how an animal may be able to respond to changes in their natural environment. 

This is particularly relevant for appreciating the potential future challenges, such as global climate change, 

faced by animals during development. Likewise, understanding if there are critical windows during which 

developing animals are particularly sensitive to environmental contaminants, and how that sensitivity relates 

to developmental status, can be used to understand the mechanism of toxicity and may be useful in 

conservation efforts.  

As our knowledge of developmental phenotypic plasticity and critical windows grows, we must 

continue to assess and improve how we approach their study. A search for a critical window may begin 

broadly, covering as much of development as possible and using a relatively simple experimental design. 

Once a period of plasticity or susceptibility has been detected then that time period can be of closer focus, 

with more detailed experimental approaches used to define the window with as much accuracy as possible. 

The considerations for critical window experimental designs discussed in this chapter need not be 
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incorporated into every study, as experiments would no doubt become unmanageable in terms of the 

number of treatments and animals required. However, variables such as the timing of exposures and if a 

single or multiple doses of the stressor or combined stressors are used should be considered in the context of 

the study species and questions of interest. Likewise, the form of the endpoints examined, whether 

morphological, physiological or biochemical, and when those endpoints are measured are important 

decisions that can help understand how the developmental environment influences animals at all stages of 

life. A continued focus on critical windows, and advancements in the approaches used to detect and study 

them, will no doubt contribute to our growing knowledge of the interaction between development, 

environment and physiology. 

 

 

References 
 

Ackerman RA, Rahn H (1981) In vivo O2 and water vapor permeability of the hen's eggshell during early 

development. Resp Physiol 45 (1):1-8. 

Ali S, Champagne DL, Alia A, Richardson MK (2011) Large-scale analysis of acute ethanol exposure in 

zebrafish development: a critical time window and resilience. PLOS ONE 6 (5):e20037. 

Andersen HS, Gambling L, Holtrop G, McArdle HJ (2006) Maternal iron deficiency identifies critical 

windows for growth and cardiovascular development in the rat postimplantation embryo. J Nutr 136 

(5):1171-1177. 

Andersen L, Holbech H, Gessbo Å, Norrgren L, Petersen GI (2003) Effects of exposure to 17α-

ethinylestradiol during early development on sexual differentiation and induction of vitellogenin in 

zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 134 (3):365-374. 

Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? 

Neurosci Biobehav R 27 (1):3-18. 

Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting 

pieces of a life-history puzzle. Integr Comp Biol 44 (6):498-509. 

Ankley GT, Johnson RD (2004) Small fish models for identifying and assessing the effects of endocrine-

disrupting chemicals. ILAR J 45 (4):469-483. 

Aronzon CM, Sandoval MT, Herkovits J, Pérez-Coll CS (2011) Stage-dependent toxicity of 2,4-

dichlorophenoxyacetic on the embryonic development of a South American toad, Rhinella 

arenarum. Environ Toxicol 26 (4):373-381. 



 24 

Bambang Y, Thuet P, Charmantier-Daures M, Trilles J-P, Charmantier G (1995) Effect of copper on 

survival and osmoregulation of various developmental stages of the shrimp Penaeus japonicus Bate 

(Crustacea, Decapoda). Aquat Toxicol 33 (2):125-139. 

Baroiller J, D'cotta H (2001) Environment and sex determination in farmed fish. Comp Biochem Physiol C 

Toxicol Pharmacol 130 (4):399-409. 

Barr Jr M, DeSesso JM, Lau CS, Osmond C, Ozanne SE, Sadler TW, Simmons RA, Sonawane BR (2000) 

Workshop to identify critical windows of exposure for children's health: cardiovascular and 

endocrine work group summary. Environ Health Persp 108 (Suppl 3):569. 

Bavis RW (2005) Developmental plasticity of the hypoxic ventilatory response after perinatal hyperoxia 

and hypoxia. Resp Physiol Neurobiol 149 (1):287-299. 

Bavis RW, Fallon SC, Dmitrieff EF (2013) Chronic hyperoxia and the development of the carotid body. 

Resp Physiol Neurobiol 185 (1):94-104. 

Bavis RW, Mitchell GS (2008) Long-term effects of the perinatal environment on respiratory control. J 

Appl Physiol 104 (4):1220-1229. 

Beattie J, Pascoe D (1978) Cadmium uptake by rainbow trout, Salmo gairdneri eggs and alevins. J Fish Biol 

13 (5):631-637. 

Blaxter J (1969) Development: Eggs and Larvae. In: W.S. H, Randall DJ (eds) Fish physiology, vol 3. 

Academic Press, San Diego, pp 177-252. 

Boone MD, Hammond SA, Veldhoen N, Youngquist M, Helbing CC (2013) Specific time of exposure 

during tadpole development influences biological effects of the insecticide carbaryl in green frogs 

(Lithobates clamitans). Aquat Toxicol 130:139-148. 

Bridges C (2000) Long-term effects of pesticide exposure at various life stages of the southern leopard frog 

(Rana sphenocephala). Arch Environ Con Tox 39 (1):91-96. 

Bull J, Vogt R (1981) Temperature�sensitive periods of sex determination in emydid turtles. J Exp Zool 

218 (3):435-440. 

Bunn T, Parsons P, Kao E, Dietert R (2001) Exposure to lead during critical windows of embryonic 

development: differential immunotoxic outcome based on stage of exposure and gender. Toxicol Sci 

64 (1):57-66. 

Burggren WW (2014) Epigenetics as a source of variation in comparative animal physiology – or – 

Lamarck is lookin' pretty good these days. J Exp Biol 217 (5):682-689. 

Burggren WW, Crews D (2014) Epigenetics in Comparative Biology: Why We Should Pay Attention. 

Integr Comp Biol. 



 25 

Burggren WW, Mueller CA (2015) Developmental critical windows and sensitive periods as 3-D constructs 

in time and space. Physiol Biochem Zool 88:91-102. 

Burggren WW, Reyna KS (2011) Developmental trajectories, critical windows and phenotypic alteration 

during cardio-respiratory development. Resp Physiol Neurobiol 178:13-21. 

Carvalho GR, Hughes RN (1983) The effect of food availability, female culture�density and photoperiod 

on ephippia production in Daphnia magna Straus (Crustacea: Cladocera). Freshwater Biology 13 

(1):37-46. 

Chan T, Burggren W (2005) Hypoxic incubation creates differential morphological effects during specific 

developmental critical windows in the embryo of the chicken (Gallus gallus). Resp Physiol 

Neurobiol 145 (2-3):251-263. 

Charmantier G, Charmantier-Daures M, Bouaricha N, Thuet P, Trilles J-P, Aiken D (1988) Ontogeny of 

osmoregulation and salinity tolerance in two decapod crustaceans: Homarus americanus and 

Penaeus japonicus. Biol Bull 175 (1):102-110. 

Chiasson M, Benfey TJ, Martin-Robichaud DJ (2008) Gonadal differentiation in Atlantic cod, Gadus 

morhua L., and haddock, Melanogrammus aeglefinus (L.). Acta Ichtyol Pisc 38 (2):127-133. 

Clarren SK, Astley SJ, Gunderson VM, Spellman D (1992) Cognitive and behavioral deficits in nonhuman 

primates associated with very early embryonic binge exposures to ethanol. The Journal of pediatrics 

121 (5):789-796. 

Colombo J (1982) The critical period concept: research, methodology, and theoretical issues. Psychol Bull 

91 (2):260. 

Conover DO (1984) Adaptive significance of temperature-dependent sex determination in a fish. Am 

Nat:297-313. 

Conover DO, Fleisher MH (1986) Temperature-sensitive period of sex determination in the Atlantic 

silverside, Menidia menidia. Can J Fish Aquat Sci 43 (3):514-520. 

Copeland J, Dzialowski EM (2009) Effects of hypoxic and hyperoxic incubation on the reactivity of the 

chicken embryo (Gallus gallus) ductus arteriosi in response to catecholamines and oxygen. Exp 

Physiol 94 (1):152-161. 

Cronise K, Marino MD, Tran TD, Kelly SJ (2001) Critical periods for the effects of alcohol exposure on 

learning in rats. Behav Neurosci 115 (1):138. 

Crossley DA, 2nd, Altimiras J (2005) Cardiovascular development in embryos of the American alligator 

Alligator mississippiensis: effects of chronic and acute hypoxia. J Exp Biol 208 (Pt 1):31-39. 

Crossley II DA, Burggren WW, Altimiras J (2003) Cardiovascular regulation during hypoxia in embryos of 

the domestic chicken Gallus gallus. Am J Physiol Reg Int Comp Physiol 284 (1):R219-R226. 



 26 

DeCoursey PJ, Vernberg WB (1972) Effect of mercury on survival, metabolism and behaviour of larval 

Uca pugilator (Brachyura). OIKOS:241-247. 

Deeming D, Ferguson M, Mittwoch U, Wolf U, Dorizzi M, Zaborski P, Sharma H (1988) Environmental 

regulation of sex determination in reptiles. Philos T Roy Soc B 322 (1208):19-39. 

Degitz SJ, Kosian PA, Makynen EA, Jensen KM, Ankley GT (2000) Stage-and species-specific 

developmental toxicity of all-trans retinoic acid in four native North American ranids and Xenopus 

laevis. Toxicol Sci 57 (2):264-274. 

Dietert R, Lee J, Bunn T (2002) Developmental immunotoxicology: emerging issues. Hum Exp Toxicol 21 

(9-10):479-485. 

Dietert RR, Etzel RA, Chen D, Halonen M, Holladay SD, Jarabek AM, Landreth K, Peden DB, Pinkerton 

K, Smialowicz RJ (2000) Workshop to identify critical windows of exposure for children's health: 

immune and respiratory systems work group summary. Environ Health Persp 108 (Suppl 3):483. 

Dzialowski EM, von Plettenberg D, Elmonoufy NA, Burggren WW (2002) Chronic hypoxia alters the 

physiological and morphological trajectories of developing chicken embryos. Comp Biochem 

Physiol A 131 (4):713-724. 

Eme J, Altimiras J, Hicks JW, Crossley II DA (2011a) Hypoxic alligator embryos: Chronic hypoxia, 

catecholamine levels and autonomic responses of in ovo alligators. Comp Biochem Physiol A 160 

(3):412-420. 

Eme J, Hicks JW, Crossley II DA (2011c) Chronic hypoxic incubation blunts a cardiovascular reflex loop in 

embryonic American alligator (Alligator mississippiensis). J Comp Physiol B 181 (7):981-990. 

Eme J, Mueller CA, Manzon RG, Somers CM, Boreham DR, Wilson JY (2015) Critical windows in 

embryonic development: Shifting incubation temperatures alter heart rate and oxygen consumption 

of Lake Whitefish (Coregonus clupeaformis) embryos and hatchlings. Comp Biochem Physiol A 

179:71-80. 

Eme J, Rhen T, Crossley II DA (2014) Adjustments in cholinergic, adrenergic and purinergic control of 

cardiovascular function in snapping turtle embryos (Chelydra serpentina) incubated in chronic 

hypoxia. J Comp Physiol B 184 (7):891-902. 

Eme J, Rhen T, Tate K, Gruchalla K, Kohl Z, Slay C, Crossley II D (2013) Plasticity of cardiovascular 

function in snapping turtle embryos (Chelydra serpentina): Chronic hypoxia alters autonomic 

regulation and gene expression. Am J Physiol Reg Int Comp Physiol 304:R966-R979. 

Emlen D, Nijhout H (2001) Hormonal control of male horn length dimorphism in Onthophagus taurus 

(Coleoptera: Scarabaeidae): a second critical period of sensitivity to juvenile hormone. J Insect 

Physiol 47 (9):1045-1054. 



 27 

Emlen DJ, Nijhout HF (1999) Hormonal control of male horn length dimorphism in the dung beetle 

Onthophagus taurus (Coleoptera: Scarabaeidae). J Insect Physiol 45 (1):45-53. 

Feder ME (1985) Thermal acclimation of oxygen consumption and cardiorespiratory frequencies in frog 

larvae. Physiol Zool 58 (3):303-311. 

Feist G, Schreck CB, Fitzpatrick MS, Redding JM (1990) Sex steroid profiles of coho salmon 

(Oncorhynchus kisutch) during early development and sexual differentiation. Gen Comp Endocrinol 

80 (2):299-313. 

Fent K, Meier W (1994) Effects of triphenyltin on fish early life stages. Arch Environ Con Tox 27 (2):224-

231. 

Ferguson MW, Joanen T (1982) Temperature of egg incubation determines sex in Alligator 

mississippiensis. Nature 296:850-853. 

Ferner K, Mortola JP (2009) Ventilatory response to hypoxia in chicken hatchlings: A developmental 

window of sensitivity to embryonic hypoxia. Resp Physiol Neurobiol 165 (1):49-53. 

Finstad AG, Jonsson B (2012) Effect of incubation temperature on growth performance in Atlantic salmon. 

Mar Ecol-Prog Ser 454:75-82. 

Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on 

metabolic rate. Science 293 (5538):2248-2251. 

Gimeno S, Komen H, Venderbosch PW, Bowmer T (1997) Disruption of sexual differentiation in genetic 

male common carp (Cyprinus carpio) exposed to an alkylphenol during different life stages. Environ 

Sci Technol 31 (10):2884-2890. 

Glas PS, Courtney LA, Rayburn JR, Fisher WS (1997) Embryonic coat of the grass shrimp Palaemonetes 

pugio. Biol Bull 192 (2):231-242. 

González-Doncel M, Fernández-Torija C, Hinton D, Tarazona J (2004) Stage-specific toxicity of 

cypermethrin to medaka (Oryzias latipes) eggs and embryos using a refined methodology for an in 

vitro fertilization bioassay. Arch Environ Con Tox 48 (1):87-98. 

Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. 

Herpetologica 16:183-190. 

Grabowski CT, Paar JA (1958) The teratogenic effects of graded doses of hypoxia on the chick embryo. Am 

J Anat 103 (3):313-347. 

Green DW, Williams KA, Pascoe D (1986) The acute and chronic toxicity of cadmium to different life 

history stages of the freshwater crustacean Asellus aquaticus (L). Arch Environ Con Tox 15 (5):465-

471. 



 28 

Greulich K, Pflugmacher S (2003) Differences in susceptibility of various life stages of amphibians to 

pesticide exposure. Aquat Toxicol 65 (3):329-336. 

Hackmann E, Reinboth R (1974) Delimitation of the critical stage of hormone-influenced sex differentiation 

in Hemihaplochromis multicolor (Hilgendorf)(Cichlidae). Gen Comp Endocrinol 22 (1):42-53. 

Hakeem GF, Oddy L, Holcroft CA, Abenhaim HA (2015) Incidence and determinants of sudden infant 

death syndrome: a population-based study on 37 million births. World J Pediatr 11:41-47. 

Hanlon SM, Kerby JL, Parris MJ (2012) Unlikely remedy: Fungicide clears infection from pathogenic 

fungus in larval southern leopard frogs (Lithobates sphenocephalus). PloS one 7 (8):e43573. 

Hanlon SM, Parris MJ (2014) The interactive effects of chytrid fungus, pesticides, and exposure timing on 

gray treefrog (Hyla versicolor) larvae. Environ Toxicol Chem 33 (1):216-222. 

Harrington RW (1968) Delimitation of the thermolabile phenocritical period of sex determination and 

differentiation in the ontogeny of the normally hermaphroditic fish Rivulus marmoratus Poey. 

Physiol Zool:447-460. 

Hayes TB (1997) Steroids as potential modulators of thyroid hormone activity in anuran metamorphosis. 

Am Zool 37 (2):185-194. 

Hendry C, Martin�Robichaud D, Benfey T (2002) Gonadal sex differentiation in Atlantic halibut. J Fish 

Biol 60 (6):1431-1442. 

Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27 (1):549-579. 

Herzig A, Winkler H (1986) The influence of temperature on the embryonic development of three cyprinid 

fishes, Abramis brama, Chalcalburnus chalcoides mento and Vimba vimba. J Fish Biol 28:171-181. 

Hill Jr RL, Janz DM (2003) Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex 

ratio and breeding success. Aquat Toxicol 63 (4):417-429. 

Hillman R (1977) Polygenic control of Drosophila morphogenesis during the stages of determination and 

specification of adult structures. Am Zool 17 (3):521-533. 

Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J 

Exp Biol 213 (1):3-16. 

Hogan NS, Duarte P, Wade MG, Lean DRS, Trudeau VL (2008) Estrogenic exposure affects 

metamorphosis and alters sex ratios in the northern leopard frog (Rana pipiens): Identifying 

critically vulnerable periods of development. Gen Comp Endocrinol 156 (3):515-523. 

Hunt J, Simmons LW (1997) Patterns of fluctuating asymmetry in beetle horns: an experimental 

examination of the honest signalling hypothesis. Behavioral Ecology and Sociobiology 41 (2):109-

114. 



 29 

Hunter GA, Donaldson EM (1983) Hormonal sex control and its application to fish culture. In: Hoar WS, 

Randall DJ, Donaldson EM (eds) Fish physiology, vol 9. Academic Press, New York, pp 223-303. 

Itow T, Loveland R, Botton M (1998) Developmental abnormalities in horseshoe crab embryos caused by 

exposure to heavy metals. Arch Environ Con Tox 35 (1):33-40. 

Iwamatsu T (2004) Stages of normal development in the medaka Oryzias latipes. Mech Develop 121 

(7):605-618. 

Johnson JS, Newport EL (1989) Critical period effects in second language learning: The influence of 

maturational state on the acquisition of English as a second language. Cognitive psychology 21:60-

99. 

Johnson PT, Kellermanns E, Bowerman J (2011) Critical windows of disease risk: amphibian pathology 

driven by developmental changes in host resistance and tolerance. Funct Ecol 25 (3):726-734. 

Jones DK, Hammond JI, Relyea RA (2011) Competitive stress can make the herbicide Roundup® more 

deadly to larval amphibians. Environ Toxicol Chem 30 (2):446-454. 

Kam YC (1993) Physiological effects of hypoxia on metabolism and growth of turtle embryos. Resp 

Physiol 92:127-138. 

Kamler E, Keckeis H, Bauer-Nemeschkal E (1998) Temperature-induced changes of survival, development 

and yolk partitioning in Chondrostoma nasus. J Fish Biol 53:658-682. 

Karraker NE, Arrigoni J, Dudgeon D (2010) Effects of increased salinity and an introduced predator on 

lowland amphibians in Southern China: species identity matters. Biological Conservation 143 

(5):1079-1086. 

Kefford BJ, Papas PJ, Nugegoda D (2003) Relative salinity tolerance of macroinvertebrates from the 

Barwon River, Victoria, Australia. Marine and Freshwater Research 54 (6):755-765. 

Kettlewell JR, Raymond CS, Zarkower D (2000) Temperature-dependent expression of turtle Dmrt 1 prior 

to sexual differentiation. Genesis 26 (3):174-178. 

Kikuyama S, Kawamura K, Tanaka S, Yamamoto K (1993) Aspects of amphibian metamorphosis: 

hormonal control. In: Jeon KW, Jarvik J (eds) International Review of Cytology, vol 145. Academic 

Press, San Diego, pp 105-105. 

Knudsen E (2004) Sensitive periods in the development of the brain and behavior. J Cognitive Neurosci 16 

(8):1412-1425. 

Kochhar D, Penner JD, Tellone CI (1984) Comparative teratogenic activities of two retinoids: Effects on 

palate and limb development. Teratogen Carcin Mut 4 (4):377-387. 



 30 

Koger CS, Teh SJ, Hinton DE (2000) Determining the sensitive developmental stages of intersex induction 

in medaka (Oryzias latipes) exposed to 17β-estradiol or testosterone. Mar Environ Res 50 (1–

5):201-206. 

Korpelainen H (1990) Sex ratios and conditions required for environmental sex determination in animals. 

Biol Rev 65 (2):147-184. 

Kuramoto M (1975) Adaptive significance in oxygen consumption of frog embryos in relation to the 

environmental temperatures. Comp Biochem Physiol A 52 (1). 

Landreth K (2002) Critical windows in development of the rodent immune system. Hum Exp Toxicol 21 (9-

10):493-498. 

Latham KE, Just JJ (1989) Oxygen availability provides a signal for hatching in the rainbow trout (Salmo 

gairdneri) embryo. Can J Fish Aquat Sci 46:55-58. 

Lavolpe M, Greco LL, Kesselman D, Rodríguez E (2004) Differential toxicity of copper, zinc, and lead 

during the embryonic development of Chasmagnathus granulatus (Brachyura, Varunidae). Environ 

Toxicol Chem 23 (4):960-967. 

Lee J-E, Chen S, Golemboski KA, Parsons PJ, Dietert RR (2001) Developmental windows of differential 

lead-induced immunotoxicity in chickens. Toxicology 156 (2):161-170. 

Lin H-P, Thuet P, Trilles JP, Mounet-Guillaume R, Charmantier G (1993) Effects of ammonia on survival 

and osmoregulation of various development stages of the shrimp Penaeus japonicus. Mar Biol 117 

(4):591-598. 

Liu Q, Fehring C, Lowry TF, Wong-Riley MT (2009) Postnatal development of metabolic rate during 

normoxia and acute hypoxia in rats: implication for a sensitive period. J Appl Physiol 106 (4):1212-

1222. 

Liu Q, Lowry TF, Wong-Riley MT (2006) Postnatal changes in ventilation during normoxia and acute 

hypoxia in the rat: implication for a sensitive period. J Physiol 577 (3):957-970. 

Liu Q, Wong-Riley MT (2010) Postnatal changes in the expressions of serotonin 1A, 1B, and 2A receptors 

in ten brain stem nuclei of the rat: implication for a sensitive period. Neuroscience 165 (1):61-78. 

López Greco L, Rodriguez E, Bolaños J, Hernandez G, Fingerman M (2002) Toxicity of copper sulphate 

during early and late embryonic development of a palaemonid shrimp (Crustacea). Invertebrate 

reproduction & development 41 (1-3):165-170. 

Maack G, Segner H (2004) Life-stage-dependent sensitivity of zebrafish (Danio rerio) to estrogen exposure. 

Comp Biochem Physiol C Toxicol Pharmacol 139 (1–3):47-55. 



 31 

Mariño-Balsa J, Poza E, Vázquez E, Beiras R (2000) Comparative toxicity of dissolved metals to early 

larval stages of Palaemon serratus, Maja squinado, and Homarus gammarus (Crustacea: Decapoda). 

Arch Environ Con Tox 39 (3):345-351. 

Mattson SN, Riley EP (1998) A review of the neurobehavioral deficits in children with fetal alcohol 

syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res 22 (2):279-294. 

McCutcheon IE, Metcalfe J, Metzenberg AB, Ettinger T (1982) Organ growth in hyperoxic and hypoxic 

chick embryos. Resp Physiol 50 (2):153-163. 

McLaren IA, Cooley JM (1972) Temperature adaptation of embryonic development rate among frogs. 

Physiol Zool 45:223-228. 

Mills NE, Barnhart MC (1999) Effects of hypoxia on embryonic development in two Ambystoma and two 

Rana species. Physiol Biochem Zool 72:179-188. 

Mueller CA, Eme J, Burggren WW, Rundle SD, Roghair RD (2015a) Challenges and opportunities in 

integrative developmental physiology. Comp Biochem Physiol A in review. 

Mueller CA, Eme J, Manzon RG, Somers CM, Boreham DR, Wilson JY (2015c) Embryonic critical 

windows: Changes in incubation temperature alter survival, hatchling phenotype and cost of 

development in Lake whitefish (Coregonus clupeaformis). J Comp Physiol B 185:315-331. 

Mueller CA, Joss JMP, Seymour RS (2011a) Effects of environmental oxygen on development and 

respiration of Australian lungfish (Neoceratodus forsteri) embryos. J Comp Physiol B 181:941-952. 

Mueller CA, Joss JMP, Seymour RS (2011b) The energy cost of embryonic development in fishes and 

amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri. J Comp 

Physiol B 181:43-52. 

Murdock C, Wibbels T (2002) Expression of Dmrt1 in a turtle with temperature-dependent sex 

determination. Cytogenet Genome Res 101 (3-4):302-308. 

Nakamura M, Takahashi H (1973) Gonadal sex differentiation in Tilapia mossambica, with special regard 

to the time of estrogen treatment effective in inducing complete feminization of genetic males. Bull 

Fac Fish Hokkaido Univ 24 (1):1-13. 

Olmstead AW, Leblanc GA (2002) Juvenoid hormone methyl farnesoate is a sex determinant in the 

crustacean Daphnia magna. J Exp Zool 293 (7):736-739. 

Oxendine SL, Cowden J, Hinton DE, Padilla S (2006) Vulnerable windows for developmental ethanol 

toxicity in the Japanese medaka fish (Oryzias latipes). Aquat Toxicol 80 (4):396-404. 

Pérez-Coll C, Herkovits J (1990) Stage dependent susceptibility to lead in Bufo arenarum embryos. Environ 

Pollut 63 (3):239-245. 



 32 

Petranka JW, Just JJ, Crawford EC (1982) Hatching of amphibian embryos: the physiological trigger. 

Science 217:257-259. 

Pieau C, Dorizzi M (1981) Determination of temperature sensitive stages for sexual differentiation of the 

gonads in embryos of the turtle, Emys orbicularis. J Morphol 170 (3):373-382. 

Piferrer F, Donaldson EM (1989) Gonadal differentiation in coho salmon, Oncorhynchus kisutch, after a 

single treatment with androgen or estrogen at different stages during ontogenesis. Aquaculture 77 

(2):251-262. 

Price JW (1934a) The Embryology of the Whitefish Coregonus Clupeaformis, (Mitchill). Part I. Ohio J Sci 

34:287-305. 

Price JW (1934b) The Embryology of the Whitefish Coregonus Clupeaformis, (Mitchill). Part II. 

Organogenesis. Ohio J Sci 34:399-414. 

Price JW (1935) The Embryology of the Whitefish Coregonus Clupeaformis, (Mitchill). Part III. The 

second half of the incubation period. Ohio J Sci 35:40-53. 

Pryor JL, Hughes C, Foster W, Hales BF, Robaire B (2000) Critical windows of exposure for children's 

health: the reproductive system in animals and humans. Environ Health Persp 108 (Suppl 3):491. 

Relyea RA, Mills N (2001) Predator-induced stress makes the pesticide carbaryl more deadly to gray 

treefrog tadpoles (Hyla versicolor). P Natl Acad Sci USA 98 (5):2491-2496. 

Rice D, Barone Jr S (2000) Critical periods of vulnerability for the developing nervous system: evidence 

from humans and animal models. Environ Health Persp 108 (Suppl 3):511. 

Romanoff AL (1967) Biochemistry of the Avian Embryo. John Wiley and Sons, New York. 

Rombough PJ (1988) Respiratory gas exchange, aerobic metabolism, and effects of hypoxia during early 

life. In: Hoar WS, Randall DJ (eds) The Physiology of Developing Fish. Fish Physiology, vol 11. 

Academic Press, San Diego, pp 59-161. 

Rombough PJ (2003) Development rate: Modelling developmental time and temperature. Nature 424 

(6946):268-269. 

Sarre SD, Georges A, Quinn A (2004) The ends of a continuum: genetic and temperature�dependent sex 

determination in reptiles. Bioessays 26 (6):639-645. 

Schneider ML, Moore CF, Becker EF (2001) Timing of moderate alcohol exposure during pregnancy and 

neonatal outcome in rhesus monkeys (Macaca mulatta). Alcohol Clin Exp Res 25 (8):1238-1245. 

Schotthoefer A, Koehler A, Meteyer C, Cole R (2003) Influence of Ribeiroia infection on limb development 

and survival of northern leopard frogs: effects of host-stage and parasite exposure level. Can J Zool 

81:1144-1153. 



 33 

Scott GR, Johnston IA (2012) Temperature during embryonic development has persistent effects on thermal 

acclimation capacity in zebrafish. P Natl Acad Sci USA 109 (35):14247-14252. 

Selevan SG, Kimmel CA, Mendola P (2000) Identifying critical windows of exposure for children's health. 

Environ Health Persp 108 (Suppl 3):451. 

Seymour RS, Roberts JD, Mitchell NJ, Blaylock AJ (2000) Influence of environmental oxygen on 

development and hatching of aquatic eggs of the Australian frog, Crinia georgiana. Physiol 

Biochem Zool 73:501-507. 

Sive H, Draper B, Harland R, Weintraub H (1990) Identification of a retinoic acid-sensitive period during 

primary axis formation in Xenopus laevis. Genes & development 4:932-942. 

Sollid SA, Lorz HV, Stevens DG, Bartholomew JL (2003) Age-dependent susceptibility of Chinook salmon 

to Myxobolus cerebralis and effects of sustained parasite challenges. Journal of Aquatic Animal 

Health 15 (2):136-146. 

Stross RG, Hill JC (1965) Diapause induction in Daphnia requires two stimuli. Science 150 (3702):1462-

1464. 

Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and 

trends of amphibian declines and extinctions worldwide. Science 306 (5702):1783-1786. 

Sulik KK, Dehart DB, Rogers JM, Chernoff N (1995) Teratogenicity of low doses of all�trans retinoic acid 

in presomite mouse embryos. Teratology 51 (6):398-403. 

Sweeney BW, Schnack JA (1977) Egg development, growth and metabolism of Sigara alternata (Say) 

(Hemiptera: Corixidae) in fluctuating thermal environments. Ecology 58:265-277. 

Tate KB, Kohl ZF, Eme J, Rhen T, Crossley DA (2015) Critical windows of cardiovascular susceptibility to 

developmental hypoxia in Common snapping turtle (Chelydra serpentina) embryos. Physiol 

Biochem Zool in press. 

Taylor LW, Kreutzige GO, Abercrombie GL (1971) The gaseous environment of the chick embryo in 

relation to its development and hatchability 5. Effect of carbon dioxide and oxygen levels during the 

terminal days of incubation. Poult Sci 50 (1):66-78. 

Taylor LW, Kreutziger GO (1965) The gaseous environment of the chick embryo in relation to its 

development and hatchability 2. Effect of carbon dioxide and oxygen levels during the period of the 

fifth through the eighth days of incubation. Poult Sci 44 (1):98-106. 

Taylor LW, Kreutziger GO (1966) The gaseous environment of the chick embryo in relation to its 

development and hatchability 3. Effect of carbon dioxide and oxygen levels during the period of the 

ninth through the twelfth days of incubation. Poult Sci 45 (5):867-884. 



 34 

Taylor LW, Kreutziger GO (1969) The gaseous environment of the chick embryo in relation to its 

development and hatchability 4. Effect of carbon dioxide and oxygen levels during the period of the 

thirteenth through the sixteenth days of incubation. Poult Sci 48 (3):871-877. 

Taylor LW, Sjodin RA, Gunns C (1956) The gaseous environment of the chick embryo in relation to its 

development and hatchability 1. Effect of carbon dioxide and oxygen levels during the first four 

days of incubation upon hatchability. Poult Sci 35 (6):1206-1215. 

Tazawa H (1981) Effect of O2 and CO2 in N2, He, and SF6 on chick embryo blood pressure and heart rate. J 

Appl Physiol 51 (4):1017-1022. 

Tazawa H, Hashimoto Y, Nakazawa S, Whittow GC (1992) Metabolic responses of chicken embryos and 

hatchlings to altered O2 environments. Resp Physiol 88:37-50. 

Tran TD, Cronise K, Marino MD, Jenkins WJ, Kelly SJ (2000) Critical periods for the effects of alcohol 

exposure on brain weight, body weight, activity and investigation. Behav Brain Res 116 (1):99-110. 

Turner BJ, Davis WP, Taylor D (1992) Abundant males in populations of a selfing hermaphrodite fish, 

Rivulus marmoratus, from some Belize cays. J Fish Biol 40 (2):307-310. 

Tyler C, Jobling S, Sumpter J (1998) Endocrine disruption in wildlife: a critical review of the evidence. 

CRC Cr Rev Toxicol 28 (4):319-361. 

Uylings HB (2006) Development of the human cortex and the concept of “critical” or “sensitive” periods. 

Language Learning 56 (s1):59-90. 

van Aerle R, Pounds N, Hutchinson TH, Maddix S, Tyler CR (2002) Window of sensitivity for the 

estrogenic effects of ethinylestradiol in early life-stages of fathead minnow, Pimephales promelas. 

Ecotoxicology 11 (6):423-434. 

Van Leeuwen C, Griffioen P, Vergouw W, Maas-Diepeveen J (1985) Differences in susceptibility of early 

life stages of rainbow trout (Salmo gairdneri) to environmental pollutants. Aquat Toxicol 7 (1):59-

78. 

Vickers T (1985) Embryolethality in rats caused by retinoic acid. Teratology 31 (1):19-33. 

Villalobos SA, Hamm JT, Teh SJ, Hinton DE (2000) Thiobencarb-induced embryotoxicity in medaka 

(Oryzias latipes): stage-specific toxicity and the protective role of chorion. Aquat Toxicol 48 

(2):309-326. 

Vito CC, Wieland SJ, Fox TO (1979) Androgen receptors exist throughout the ‘critical period’of brain 

sexual differentiation. Nature 282:308-310. 

Wangensteen OD, Rahn H, Burton RR, Smith AH (1974) Respiratory gas exchange of high altitude adapted 

chick embryos. Resp Physiol 21 (1):61-70. 



 35 

Weber LP, Hill Jr RL, Janz DM (2003) Developmental estrogenic exposure in zebrafish (Danio rerio): II. 

Histological evaluation of gametogenesis and organ toxicity. Aquat Toxicol 63 (4):431-446. 

Wedemeyer G (1968) Uptake and distribution of Zn65 in the coho salmon egg (Oncorhynchus kisutch). 

Comp Biochem Physiol 26 (1):271-279. 

Wibbels T, Bull JJ, Crews D (1991) Chronology and morphology of temperature�dependent sex 

determination. J Exp Zool 260 (3):371-381. 

Williams W (2001) Anthropogenic salinisation of inland waters. Hydrobiologia 466:329-337. 

Wong C, Chu K, Tang K, Tam T, Wong L (1993) Effects of chromium, copper and nickel on survival and 

feeding behaviour of Metapenaeus ensis larvae and postlarvae (Decapoda: Penaeidae). Mar Environ 

Res 36 (2):63-78. 

Wong-Riley MT, Liu Q (2005) Neurochemical development of brain stem nuclei involved in the control of 

respiration. Resp Physiol Neurobiol 149 (1):83-98. 

Wu Y, Zhou Q (2012) Dose- and time-related changes in aerobic metabolism, chorionic disruption, and 

oxidative stress in embryonic medaka (Oryzias latipes): Underlying mechanisms for silver 

nanoparticle developmental toxicity. Aquat Toxicol 124–125 (0):238-246. 

Xu L, Mortola JP (1989) Effects of hypoxia or hyperoxia on the lung of the chick embryo. Canadian Journal 

of Physiology and Pharmacology 67 (5):515-519. 

Yntema C (1968) A series of stages in the embryonic development of Chelydra serpentina. J Morphol 125 

(2):219-251. 

Yntema C (1976) Effects of incubation temperatures on sexual differentiation in the turtle, Chelydra 

serpentina. J Morphol 150 (2):453-461. 

Yntema C (1979) Temperature levels and periods of sex determination during incubation of eggs of 

Chelydra serpentina. J Morphol 159 (1):17-27. 

Yntema C, Mrosovsky N (1982) Critical periods and pivotal temperatures for sexual differentiation in 

loggerhead sea turtles. Can J Zool 60 (5):1012-1016. 

Yuan J, Zhang X, Yu L, Sun Z, Zhu P, Wang X, Shi H (2011) Stage-specific malformations and phenotypic 

changes induced in embryos of amphibian (Xenopus tropicalis) by triphenyltin. Ecotox Environ Safe 

74 (7):1960-1966. 

  



 36 

Figure Captions 

 

Fig. 1 Schematic of a simple critical window experimental design. The design includes a control treatment, 

in which animals are exposed to control conditions throughout development, a chronic exposure treatment, 

in which animals are exposed to an environmental stressor throughout development, and treatments with 

exposures during distinct, separate periods of development. In this instance the windows of exposure cover 

the first, middle and last third of development 

 

Fig. 2 Schematic of a critical window experimental design during the embryonic development of a fish, 

modeled on lake whitefish (Coregonus clupeaformis) (Price 1934a, b, 1935; Eme et al. 2015). Cleavage and 

gastrulation, during which division of early cells and formation of the germ layers occurs, covers 

approximately the first 15% of development. Early organogenesis, which represents the first formation of 

organs from the ectoderm, mesoderm and endoderm and ends at the onset of the heartbeat, covers 

approximately 16-30% of development. Circulation and fin development, which represents continued 

differentiation of tissues, covers 31-60% of development. Growth and pigmentation, during which 

pigmentation increases, embryos grow and become progressively active, occurs during 61%-hatch. The 

design includes a control and a chronic exposure to an environmental stressor (exposure 1). Windows of 

exposure also occur during each developmental phase (exposures 2, 4, 6 & 8) or overlap these phases 

(exposures 3, 5 & 7) to create a series of overlapping exposure windows 

 

Fig. 3 Schematic of a critical window experimental design with multiple exposure windows and stressor 

doses. The design is similar to that presented in Figure 1 but includes chronic exposure treatments for each 

dose, and treatments with an exposure to each dose during three distinct, separate periods of development. 

This design can be used to build a 3-D critical window, which illustrates the interaction between exposure 

window, dose and phenotypic modification (Fig. 4)  

 

Fig. 4 a) A critical window as a three-dimensional construct illustrating the interaction between exposure 

time, stressor dose and phenotypic modification. This three-dimensional window can be constructed using 

an experimental design as illustrated in Figure 3. b) Relationship between salinity (ppt), time of exposure in 

development (d), and mean survival (%) of developing brine shrimp. Modified from Burggren and Mueller 

(2015) with permission. © 2015 The University of Chicago Press 

 



Development 

Control 

Exposure 

Exposure 

Exposure 

Exposure 

Figure 1 



Figure 2 

Time 

Cleavage & 
Gastrulation 

Early 
Organogenesis 

Circulation & 
Fin Development 

Growth & 
Pigmentation 

Hatch 

Control 

Exposure 1 (Chronic) 

Exposure 2 

Exposure 3 

Exposure 4 

Exposure 5 

Exposure 6 

Exposure 7 

Exposure 8 



Development 

Control 

Low Dose 

Low Dose 

Low Dose 

Low Dose 

Figure 3 

Medium Dose 

High Dose 

Medium Dose 

High Dose 

Medium Dose 

High Dose 

Medium Dose 

High Dose 



Phenotypic 
Change 

10 

8 

6 

4 

2 

0 
2 4 6 8 10 0 

2 
4 

6 
8 

10 

Time of Exposure 

Figure 4 

Developmental Time Course 

0

20

40

60

80

10

20

30

40

50
9

12
15

0 % 
20 %
40 % 
60 % 
80 %

Survival at end of each window

0 
20 
40 
60 
80 80 
60 
40 
20 
10 

Survival (%) 

80 

Survival (%) 

Development (d) 

10 
20 

30 

40 

50 

60 

40 

20 

0 
9 

12 
15 

a 

b 


