Plant Genome:

- Plant genome more complex than other eukaryotic organisms

- Examine two ways complexity expressed:
 - Polyploidism
 - Genomic organization

Polyploidism

- Definition = duplication of # chromosomes
- Plant kingdom has HUGE number of polyploids
- Review: poplyplodism can arise in two ways:
 - Autopolyploidism:
 - two or more pair of chromosomes derived from same species (often same individual) AA + AA = AAAAA
 - process facilitated by self-fertilization of plants
 - Allopolyploidism:
 - one pair of chromosomes from each of two or more species AA + BB = AABB
 - not same a hybrid A + B = AB (usually sterile)
 - asexual reproduction and self fertilization facilitate process
Plant Genomes

• Plants contain >> DNA than “needed”

• DNA sequences present in low, medium, or high copy-numbers
 – low-copy genes (1-2 copies) code for specific enzymes
 – medium-copy (100’s-1000’s copies) encode rRNA
 – high-copy (10,000’s copies) ????

• Plant Model systems
 – Effort to map entire genome of several plant species
 – allow understanding of function of each gene!
 – *Arabidopsis* (wild mustard) genome now complete
 – rice genome soon to be complete

Plant Genomes

• Chloroplast genome

• Recall origin of chloroplasts
 – endosymbiotic prokaryotic organisms
 – contain own DNA (circular, very much like that of bacteria)

• Chloroplasts inherited from female parent

• DNA in chloroplast much more conservative than chromosomal DNA

• Provide powerful tool for understanding evolutionary relationships among species
Tissue Culture

• Totipotency:
 – mature plant cells retain ability to express entire genome
 – any plant cell can, under appropriate conditions, act like a fertilized egg and produce an entirely new organism!

• Tissue culture:
 – any of several techniques for taking mature plant cells and re-creating entire plants

• Tissue culture uses
 – allows propagation of 1000’s of genetically identical individuals
 – widely used in horticulture and agriculture

Plant Biotechnology

• “genetic engineering” = insert genes from other organism (any eukaryotic organism) into plant

• Huge agriculture applications
 – tomatoes that don’t get “mushy”
 • fruit ripening caused by production of ethylene
 • insert genes which block production!
 – Herbicide resistant plants
 • glyphosate = effective herbicide that kills all plants
 • insert genes that make plant immune to glyphosate
 • now spray fields and only weeds die!
 – Nitrogen fixation
 – Insect resistance
Plant Biotechnology

– Plants with increased nutritional value
 • modify amino acid composition of grains
 • add vitamins (A, B-12, C, betacarotene, etc)

– Plants with increased economic value
 • change quality of oils from products
 • Program at UNT (Dr. Ken Chapman) to modify quality of cotton-seed oils!
 • Production of biodegradable plastics!

DULL ROAR
TALENT SHOW
April 21

Auditions Monday 16, Tuesday 17, Wednesday 18
5-7 pm in MAC

Sign-up sheets are in the Activities Binder!!
Call 6691 for Questions